...
首页> 外文期刊>RSC Advances >Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries
【24h】

Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries

机译:密度函数理论计算磷烯作为镁电池潜在阳极材料的评价计算

获取原文
获取原文并翻译 | 示例

摘要

We have systematically investigated black phosphorus and its derivative - a novel 2D nanomaterial, phosphorene - as an anode material for magnesium-ion batteries. We first performed Density Functional Theory (DFT) simulations to calculate the Mg adsorption energy, specific capacity, and diffusion barriers on monolayer phosphorene. Using these results, we evaluated the main trends in binding energy and voltage as a function of Mg concentration. Our studies revealed the following findings: (1) Mg bonds strongly with the phosphorus atoms and exists in the cationic state; (2) Mg diffusion on phosphorene is fast and anisotropic with an energy barrier of only 0.09 eV along the zigzag direction; (3) the theoretical specific capacity is 865 mA h g(-1) with an average voltage of 0.833 V (vs. Mg/Mg2+), ideal for use as an anode. Given these results, we conclude that phosphorene is a very promising anode material for Mg-ion batteries. We then expand our simulations to the case of bulk black phosphorus, where we again find favorable binding energies. We also find that bulk black phosphorous must overcome a structural stress of 0.062 eV per atom due to a volumetric expansion of 33% during magnesiation. We found that the decrease in particle size is good to increase its specific capacity.
机译:我们系统地研究了黑色磷及其衍生物 - 一种新型的2D纳米材料,磷烯 - 作为镁离子电池的阳极材料。我们首先执行密度泛函理论(DFT)模拟,以计算单层磷烯的Mg吸附能量,比容量和扩散屏障。使用这些结果,我们评估了作为Mg浓度的函数的结合能量和电压的主要趋势。我们的研究揭示了以下发现:(1)Mg与磷原子强烈键合,并存在于阳离子状态; (2)Mg对磷烯的扩散是快速和各向异性的,其能量屏障仅为沿Z字形方向的0.09eV; (3)理论特异性容量为865 mA H(-1),平均电压为0.833 V(与Mg / mg2 +),理想的是用作阳极。鉴于这些结果,我们得出结论,磷烯是Mg离子电池的非常有前途的阳极材料。然后,我们将模拟扩展到散装黑磷的情况下,我们再次找到有利的绑定能量。我们还发现,由于在磁化期间的33%的体积膨胀,散装黑色磷必须克服每种原子0.062 eV的结构应力。我们发现粒径的降低良好,可以增加其特定容量。

著录项

  • 来源
    《RSC Advances 》 |2018年第13期| 共9页
  • 作者单位

    Tianjin Univ Sch Chem Engn &

    Technol Tianjin Peoples R China;

    Tianjin Univ Sch Chem Engn &

    Technol Tianjin Peoples R China;

    Tianjin Univ Sch Chem Engn &

    Technol Tianjin Peoples R China;

    Stanford Univ Dept Appl Phys Stanford CA 94305 USA;

    Beijing Univ Chem Technol State Key Lab Chem Resource Engn Beijing 100029 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号