...
首页> 外文期刊>RSC Advances >Band gap engineering of SnS2 nanosheets by anion-anion codoping for visible-light photocatalysis
【24h】

Band gap engineering of SnS2 nanosheets by anion-anion codoping for visible-light photocatalysis

机译:Anion-Anion Copoping用于可见光光催化的ANS2纳米型带隙工程

获取原文
获取原文并翻译 | 示例

摘要

SnS2 nanosheets with three atom thickness have previously been synthesized and it has been shown that visible Eight absorption and hydrogen evolution through photocatalytic water splitting are restricted. In the present study, we have systematically investigated the electronic structures of anionic monodoped (N and P) and codoped (N-N, N-P, and P-P) SnS2 nanosheets for the design of efficient water redox photocatalysts by adopting first principles calculations with the hybrid HSE06 functional. The results show that the defect formation energies of both the anionic monodoped and all the codoped systems decrease monotonically with the decrease of the chemical potential of S. The P-P codoped SnS2 nanosheets are not only more favorable than other codoped systems under an S-poor condition, but they also reduce the band gap without introducing unoccupied impurity states above the Fermi level. Interestingly, although the P-P(ii) codoped system gives a band gap reduction, this system is only suitable for oxygen production and not for hydrogen evolution, which indicates that it may serve as a Z-scheme photocatalyst for water splitting. The P-P(i) codoped system may be a potential candidate for photocatalytic water splitting to generate hydrogen because of the appropriate band gap and band edge positions, which overcome the disadvantage that the pure SnS2 nanosheet is not beneficial for hydrogen production. More importantly, the result of optical absorption spectral analysis shows that the P-P(i) codoped SnS2 nanosheet absorbs a Longer wavelength of the visible Eight spectrum as compared to the pristine SnS2 nanosheet. The P-P(I) codoped system with a Lower doping concentration also has an absorption shift towards the visible Eight region.
机译:先前已经合成了具有三个原子厚度的SNS2纳米片,并且已经示出了通过光催化水分裂的可见八个吸收和氢化。在本研究中,我们通过采用杂交HSE06功能的第一个原理计算,系统地研究了阴离子单次(N和P)和编码(NN,NP和PP)和编码(NN,NP和PP)SNS2纳米蛋白酶的纳米蛋白酶。结果表明,随着S的化学势的降低,阴离子单码的缺陷形成能量和所有的编码系统的缺陷形成能量单调单调减少.PP编码的SNS2纳米片不仅比其他条件下的其他编码系统更有利,但它们也减少了带隙而不在费米水平上方引入未占用的杂质状态。有趣的是,尽管P-P(ii)的编码系统提供带隙减少的带隙,但该系统仅适用于氧气产生而不是用于氢化,这表明它可以用作水分裂的Z方案光催化剂。 P-P(i)编码系统可以是光催化水分裂以产生氢的潜在候选者,因为适当的带隙和带边缘位置,这克服了纯SNS2纳米晶片对氢生产没有有益的缺点。更重要的是,光学吸收光谱分析的结果表明,与原始SNS2纳米片相比,P-P(I)编码的SNS2纳米晶片被吸收了可见八个光谱的较长波长。具有较低掺杂浓度的P-P(I)编码系统也具有朝向可见八个区域的吸收移位。

著录项

  • 来源
    《RSC Advances 》 |2018年第6期| 共8页
  • 作者单位

    Southwest Univ Sch Phys Sci &

    Technol Chongqing 400715 Peoples R China;

    Southwest Univ Sch Phys Sci &

    Technol Chongqing 400715 Peoples R China;

    Southwest Univ Sch Phys Sci &

    Technol Chongqing 400715 Peoples R China;

    Southwest Univ Sch Phys Sci &

    Technol Chongqing 400715 Peoples R China;

    Southwest Univ Sch Phys Sci &

    Technol Chongqing 400715 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号