首页> 外文期刊>RSC Advances >A first-principles study on divergent reactions of using a Sr3Fe2O7 cathode in both oxygen ion conducting and proton conducting solid oxide fuel cells
【24h】

A first-principles study on divergent reactions of using a Sr3Fe2O7 cathode in both oxygen ion conducting and proton conducting solid oxide fuel cells

机译:在氧离子传导中使用SR3FE2O7阴极的发散反应和传导固体氧化物燃料电池的发散反应的第一原理研究

获取原文
获取原文并翻译 | 示例
           

摘要

Exploring mechanisms for sluggish cathode reactions is of great importance for solid oxide fuel cells (SOFCs), which will benefit the development of suitable cathode materials and then accelerate cathode reaction rates. Moreover, possible reaction mechanisms for one cathode should be different when operating in oxygen ion conducting SOFCs (O-SOFC) and in proton conducting SOFCs (P-SOFCs), and therefore, they lead to different reaction rates. In this work, a Ruddlesden-Popper (R-P) oxide, Sr3Fe2O7 (SFO), was selected as a promising cathode for both O-SOFCs and P-SOFCs. Using the first-principles approach, a microscopic understanding of the O-2 reactions over this cathode surface was investigated operating in both cells. Compared with La0.5Sr0.5Co0.25Fe0.75O3 (LSCF), the low formation energies of oxygen vacancies and low migration energy barriers for oxygen ions in SFO make oxygen conduction more preferable which is essential for cathode reactions in O-SOFCs. Nevertheless, a large energy barrier (2.28 eV) is predicted for oxygen dissociation reaction over the SFO (001) surface, while there is a zero barrier over the LSCF (001) surface. This result clearly indicates that SFO shows a weaker activity toward the oxygen reduction, which may be due to the low surface energies and the specific R-P structure. Interestingly, in P-SOFCs, the presence of protons on the SFO (001) surface can largely depress the energy barriers to around 1.46-1.58 eV. Moreover, surface protons benefit the oxygen adsorption and dissociation over the SFO (001) surface. This result together with the extremely low formation energies and migration energy barriers for protons seem to suggest that SFO could work more effectively in P-SOFCs than in O-SOFCs. It's also suggested that too many protons at the SFO surface will lead to high energy barriers for the water formation process, and thus that over-ranging steam concentrations in the testing atmosphere may have a negative effect on cell performances. Our study firstly and clearly presents the different energy barriers for one cathode performing in both O- and P-SOFCs according to their different working mechanisms. The results will be helpful to find the constraints for using cathodes toward oxygen reduction reactions, and to develop effective oxide cathode materials for SOFCs.
机译:探索缓慢阴极反应的机制对于固体氧化物燃料电池(SOFC)非常重要,这将有利于合适的阴极材料的发展,然后加速阴极反应速率。此外,当在氧离子传导SOFC(O-SOFC)和质子传导SOFC(P-SOFC)中操作时,一个阴极的可能反应机制应该是不同的,并且它们导致不同的反应速率。在这项工作中,选择Ruddlesden-popper(R-P)氧化物,Sr3Fe2O7(SFO)作为O-SOFC和P-SOFC的有希望的阴极。使用第一原理方法,在两个细胞中操作对该阴极表面上的O-2反应的显微镜。与LA0.5SR0.5CO0.25FE0.75O3(LSCF)相比,SFO中氧空位和低迁移能屏障的低形成能量使氧气传导更优选为O-SOFC中的阴极反应至关重要。然而,预测SFO(001)表面上的氧解离反应的大能量屏障(2.28eV),而在LSCF(001)表面上存在零势垒。该结果清楚地表明SFO显示朝向氧还原的较弱活动,这可能是由于低表面能和特定的R-P结构。有趣的是,在P-SOFC中,SFO(001)表面上的质子的存在在大大降低到大约1.46-1.58eV的能量屏障。此外,表面质子有益于SFO(001)表面上的氧吸附和解离。这与质子的极低的形成能量和迁移能量障碍一起似乎表明SFO可以在P-SOFC中更有效地工作,而不是在O-SOFC中工作。还建议SFO表面的质子太多将导致水形成过程的高能量屏障,因此在测试气氛中的过度蒸汽浓度可能对细胞性能产生负面影响。我们的研究首先是根据其不同的工作机制,清楚地提出了一个阴极的不同能量屏障,这两个阴极在o和p-sofcs中执行。结果将有助于找到使用阴极朝向氧还原反应的约束,并为SOFC制造有效的氧化物阴极材料。

著录项

  • 来源
    《RSC Advances》 |2018年第47期|共13页
  • 作者单位

    Univ Sci &

    Technol China CAS Key Lab Mat Energy Convers Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Key Lab Mat Energy Convers Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Key Lab Mat Energy Convers Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Key Lab Mat Energy Convers Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Key Lab Mat Energy Convers Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Key Lab Mat Energy Convers Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Key Lab Mat Energy Convers Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China CAS Key Lab Mat Energy Convers Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号