首页> 外文期刊>RSC Advances >Computational fluid dynamics modeling of the millisecond methane steam reforming in microchannel reactors for hydrogen production
【24h】

Computational fluid dynamics modeling of the millisecond methane steam reforming in microchannel reactors for hydrogen production

机译:微通道反应器中氟氯甲烷蒸汽重整的计算流体动力学建模氢气产量

获取原文
获取原文并翻译 | 示例
           

摘要

Methane steam reforming coupled with methane catalytic combustion in microchannel reactors for the production of hydrogen was investigated by means of computational fluid dynamics. Special emphasis is placed on developing general guidelines for the design of integrated micro-chemical systems for the rapid production of hydrogen. Important design issues, specifically heat and mass transfer, catalyst, dimension, and flow arrangement, were explored. The relative importance of different transport phenomena was quantitatively evaluated, and some strategies for intensifying the reforming process were proposed. The results highlighted the importance of process intensification in achieving the rapid production of hydrogen. High heat and mass transfer rates derived from miniaturization of the chemical system are insufficient for process intensification. Improvement of the reforming catalyst is also essential. The efficiency of heat exchange can be improved greatly if the reactor dimension is properly designed. Thermal management is required to improve the reliability of the integrated system. Co-current heat exchange improves the thermal uniformity in the system. The catalyst loading is a key factor determining reactor performance, and must be carefully designed. Finally, engineering maps were constructed to achieve the desired power output, and favorable operating conditions for the rapid production of hydrogen were identified.
机译:通过计算流体动力学研究了在微通道反应器中耦合的甲烷蒸汽重整与微通道反应器中的甲烷催化燃烧。特别强调开发综合微化学系统设计的一般准则,以便快速生产氢气。探讨了重要的设计问题,特别是热量和传质,催化剂,尺寸和流量安排。提出了不同运输现象的相对重要性,提出了一些加强重整过程的策略。结果强调了过程强化在实现氢气快速生产方面的重要性。源于化学系统的小型化的高热量和传质速率不足以进行过程强化。改进改性催化剂也是必不可少的。如果正确设计反应器尺寸,可以大大提高热交换效率。需要热管理来提高集成系统的可靠性。共流热交换可提高系统中的热均匀性。催化剂负载是确定反应器性能的关键因素,必须精心设计。最后,构造了工程图以实现所需的功率输出,鉴定了氢气快速生产的有利操作条件。

著录项

  • 来源
    《RSC Advances》 |2018年第44期|共18页
  • 作者单位

    Henan Polytech Univ Sch Mech &

    Power Engn Dept Energy &

    Power Engn 2000 Century Ave Jiaozuo 454000 Henan Peoples R China;

    Henan Polytech Univ Sch Mech &

    Power Engn Dept Energy &

    Power Engn 2000 Century Ave Jiaozuo 454000 Henan Peoples R China;

    Henan Polytech Univ Sch Mech &

    Power Engn Dept Energy &

    Power Engn 2000 Century Ave Jiaozuo 454000 Henan Peoples R China;

    Henan Polytech Univ Sch Mech &

    Power Engn Dept Energy &

    Power Engn 2000 Century Ave Jiaozuo 454000 Henan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号