首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Water Wicking and Droplet Spreading on Randomly Structured Thin Nanoporous Layers
【24h】

Water Wicking and Droplet Spreading on Randomly Structured Thin Nanoporous Layers

机译:随机结构薄纳米电孔层的水芯吸和液滴扩展

获取原文
获取原文并翻译 | 示例
           

摘要

Growing thin, nanostructured layers on metallic surfaces is an attractive, new approach to create super hydrophilic coatings on heat exchangers that enhance spray cooling heat transfer. This paper presents results of an experimental study of enhanced droplet spreading on zinc oxide, nanostructured surfaces of this type that were thermally grown on copper substrates. The spreading rate data obtained from "experimental high speed-videos was used to develop a model specifically for this type of ultrathin, nanoporous layer. This investigation differs from previous related studies of droplet spreading on porous surfaces, which have generally considered either ordered, thin, moderately permeable layers, or thicker, microporous layers. Our layers are both very thin and have nanoscale porosity, making them low-permeability layers that exhibit strong wicking. An added benefit is that the thermally grown, stochastic nature of our surfaces make manufacturing easily scalable and particularly attractive for spray-cooled heat exchanger applications. The model presented here can predict the spreading rate for the wetted footprint of a deposited water droplet over two spreading stages: an early synchronous spreading stage, followed-toy hemispreading. The comparison of experimental data and model predictions confirms the presence of these two specific spreading stages. The model defines the transition conditions between synchronous and hemispreading regimes based on the change in spreading mechanisms, and we demonstrate that the model predictions of spreading rate are in good agreement with the experimental determinations of droplet footprint variation with time. The results indicate that the early synchronous spreading regime is characterized by flow in the porous layer that is primarily localized near the upper droplet contact line. The potential use of these experimental findings and model for optimizing superhydrophilic, nanostructured surface coatings is also discussed, as it p
机译:在金属表面上生长薄,纳米结构层是一种有吸引力的新方法,可以在热交换器上产生超亲水涂层,增强喷雾冷却热传递。本文介绍了对氧化锌的增强液滴的实验研究,这种类型的氧化锌表面在铜基材上热生长的纳米结构。从“实验高速视频”获得的扩展率数据用于开发专门针对这种类型的超薄纳米多孔层的模型。该研究与先前相关的液滴在多孔表面上的相关研究,这通常被认为是有序的,薄,适度透过的层,或较厚的微孔层。我们的层既非常薄,又具有纳米级孔隙率,使其具有强大的芯吸的低渗透层。我的表面的热生长,随机性质易于制造制造可扩展,特别是对喷涂的热交换器应用特别有吸引力。这里呈现的模型可以预测两个传播阶段的沉积水滴的湿润占地面积的扩展速率:早期同步扩散阶段,跟踪玩具的半自我。实验的比较数据和模型预测证实了这两个特定的扩展ST的存在年龄。该模型基于扩展机制的变化定义了同步和半自辩制度之间的过渡条件,并且我们证明了扩散率的模型预测与随时间的液滴足迹变化的实验确定吻合良好。结果表明,早期同步扩散制度的特征在于在上液滴接触线附近的多孔层中的流动。还讨论了这些实验结果和模型用于优化超硫酸的纳米结构涂层,如图所示

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号