首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >How Implementation of Entropy in Driving Structural Ordering of Nanoparticles Relates to Assembly Kinetics: Insight into Reaction-Induced Interfacial Assembly of Janus Nanoparticles
【24h】

How Implementation of Entropy in Driving Structural Ordering of Nanoparticles Relates to Assembly Kinetics: Insight into Reaction-Induced Interfacial Assembly of Janus Nanoparticles

机译:如何在纳米颗粒的结构排序方面的实施方式涉及装配动力学:洞察janus纳米粒子的反应诱导的界面组装

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The ability to understand and exploit entropic contributions to ordering transition is of essential importance in the design of self assembling systems with well-controlled structures. However, much less is known about the role of assembly kinetics in entropy-driven phase behaviors. Here, by combining computer simulations and theoretical analysis, we report that the implementation of entropy in driving phase transition significantly depends on the kinetic process in the reaction induced self-assembly of newly designed nanoparticle systems. In particular, such systems comprise binary Janus nanoparticles at the fluid fluid interface and undergo phase transition driven by entropy and controlled by the polymerization reaction initiated from the surfaces of just one component of nanoparticles. Our simulations demonstrate that the competition between the reaction rate and the diffusive dynamics of nanoparticles governs the implementation of entropy in driving the phase transition from randomly mixed phase to intercalated phase in these interfacial nanoparticle mixtures, which thereby results in diverse kinetic pathways. At low reaction rates, the transition exhibits abrupt jump in the mixing parameter, in a similar way to first-order, equilibrium phase transition. Increasing the reaction rate diminishes the jumps until the transitions become continuous, behaving as a second-order-like phase transition, where a critical exponent, characterizing the transition, can be identified. We finally develop an analytical model of the blob theory of polymer chains to complement the simulation results and reveal essential scaling laws of the entropy-driven phase behaviors. In effect, our results allow for further opportunities to amplify the entropic contributions to the materials design via kinetic control.
机译:理解和利用订购转变的熵贡献的能力对于具有受控结构的自组装系统的设计至关重要。然而,关于组装动力学在熵驱动的阶段行为中的作用是较少的。这里,通过组合计算机模拟和理论分析,我们报告说,驱动相转变的熵的实施显着取决于反应诱导新设计的纳米粒子系统的自组装中的动力学过程。特别地,这种系统在流体流体界面处包括二元Janus纳米颗粒,并且通过熵驱动的相变并由由纳米颗粒的仅一个组分的表面引发的聚合反应控制。我们的模拟表明,反应速率与纳米颗粒的扩散动力学之间的竞争管理熵在这些界面纳米粒子混合物中从随机混合相位转移到插层相位的熵的实施,从而导致不同的动力途径。在低反应速率下,过渡表现在混合参数中突然跳跃,以类似于一阶的平衡相转变。增加反应速率会降低跳跃,直到过渡变为连续,表现为二阶相转变,其中可以识别表征过渡的临界指数。我们终于开发了聚合物链的BLOB理论的分析模型,以补充仿真结果并揭示熵驱动的阶段行为的基本缩放规律。实际上,我们的结果允许进一步的机会通过动力控制扩增材料设计的熵贡献。

著录项

  • 来源
  • 作者单位

    Tsinghua Univ Dept Chem Engn State Key Lab Chem Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Chem Engn State Key Lab Chem Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Chem Engn State Key Lab Chem Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Chem Engn State Key Lab Chem Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Chem Engn State Key Lab Chem Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Chem Engn State Key Lab Chem Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Chem Engn State Key Lab Chem Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Chem Engn State Key Lab Chem Engn Beijing 100084 Peoples R China;

    Univ Chinese Acad Sci Coll Mat Sci &

    Optoelect Technol Beijing 100049 Peoples R China;

    Tsinghua Univ Dept Chem Engn State Key Lab Chem Engn Beijing 100084 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;化学;
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号