...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Competitive Sorption of CO2 with Gas Mixtures in Nanoporous Shale for Enhanced Gas Recovery from Density Functional Theory
【24h】

Competitive Sorption of CO2 with Gas Mixtures in Nanoporous Shale for Enhanced Gas Recovery from Density Functional Theory

机译:纳米多孔页岩中具有气体混合物的二氧化碳的竞争吸附,以增强密度函数理论的气体回收

获取原文
获取原文并翻译 | 示例

摘要

CO2 competitive sorption with shale gas under various conditions from simple to complex pore characteristics is studied using a molecular density functional theory (DFT) that reduces to perturbed chain-statistical associating fluid theory in the bulk fluid region. The DFT model is first verified by grand canonical Monte Carlo simulation in graphite slit pores for pure and binary component systems at different temperatures, pressures, pore sizes, and bulk gas compositions for methane/ethane with CO2 Then, the model is utilized in multicomponent systems that include CH4, C2H6, and C3+ components of different compositions. It is shown that the selectivity of CO2 decreases with increases in temperature, pressure, nanopore size, and average molecular weight of shale gas. Extending the model to more realistic situations, we consider the impact of water present in the pore and consider the effect of permeation of fluid molecules into the kerogen that forms the pore walls. The water-graphite interaction is calibrated with contact angle from molecular simulation data from the literature. The kerogen pore model prediction of gas absolute sorption is compared with experimental and molecular simulation values in the literature. It is shown that the presence of water reduces the CO2 adsorption but improves the CO2 selectivity. The dissolution of gases into the kerogen matrix also leads to the increase in CO2 selectivity. The effect of kerogen type and maturity on the gas sorption amount and CO2 selectivity is also studied. The associated mechanisms are discussed to provide fundamental understanding for gas recovery by CO2.
机译:使用分子密度泛函理论(DFT)研究了从简单到复杂孔隙特性的各种条件下的竞争性吸附,从而降低了散装流体区域中的扰动链统计关联流体理论。 DFT模型首先通过在不同温度,压力,孔径和二元组件系统中的石墨狭缝孔隙中的Grand Canonical Monte Carlo仿真验证,用于甲烷/乙烷的甲烷/乙烷的甲烷/乙烷,然后,该模型用于多组分系统包括不同组合物的CH 4,C2H6和C3 +组分。结果表明,二氧化碳的选择性随着岩石气体的温度,压力,纳米孔尺寸和平均分子量的增加而降低。将模型扩展到更现实的情况,我们考虑孔中存在的水的影响,并考虑流体分子渗透到形成孔壁的角膜炎中的效果。从文献中的分子模拟数据与接触角校准水石墨相互作用。将气体绝对吸附的Kerogen孔隙模型预测与文献中的实验和分子模拟值进行比较。结果表明,水的存在减少了CO 2吸附,但改善了CO 2选择性。气体溶解到基因内基质中也导致CO 2选择性的增加。研究了Kerogen型和成熟度对气体吸附量和CO 2选择性的影响。讨论了相关机制以提供CO2对天然气回收的基本理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号