首页> 外文期刊>Nucleic Acids Research >Secondary structure forming sequences drive SD-MMEJ repair of DNA double-strand breaks
【24h】

Secondary structure forming sequences drive SD-MMEJ repair of DNA double-strand breaks

机译:二次结构形成序列驱动SD-MMEJ修复DNA双链断裂

获取原文
获取原文并翻译 | 示例
           

摘要

Alternative end-joining (alt-EJ) repair of DNA double-strand breaks is associated with deletions, chromosome translocations, and genome instability. Alt-EJ frequently uses annealing of microhomologous sequences to tether broken ends. When accessible pre-existing microhomologies do not exist, we have postulated that new microhomologies can be created via limited DNA synthesis at secondary-structure forming sequences. This model, called synthesis-dependent microhomology-mediated end joining (SD-MMEJ), predicts that differences between DNA sequences near double-strand breaks should alter repair outcomes in predictable ways. To test this hypothesis, we injected plasmids with sequence variations flanking an I-SceI endonuclease recognition site into I-SceI expressing Drosophila embryos and used Illumina amplicon sequencing to compare repair junctions. As predicted by the model, we found that small changes in sequences near the I-SceI site had major impacts on the spectrum of repair junctions. Bioinformatic analyses suggest that these repair differences arise from transiently forming loops and hairpins within 30 nucleotides of the break. We also obtained evidence for 'trans SD-MMEJ,' involving at least two consecutive rounds of microhomology annealing and synthesis across the break site. These results highlight the importance of sequence context for alt-EJ repair and have important implications for genome editing and genome evolution.
机译:DNA双链断裂的替代终端连接(ALT-EJ)修复与缺失,染色体易位和基因组不稳定性有关。 Alt-EJ经常使用微甾级序列的退火到残留的末端。当可访问的预先存在的微泡沫学不存在时,我们已经假定了通过在二级结构形成序列中通过有限的DNA合成产生新的微型方法。该模型称为合成依赖性微型学介导的末端连接(SD-MMEJ),预测了双链断裂附近DNA序列之间的差异,应以可预测的方式改变修复结果。为了测试这一假设,我们将序列变化的质粒注射了I-Scei内切核酸酶识别部位的序列变化,进入表达果蝇胚胎的I-Scei,并使用Illumina扩增子测序比较修复连接。如模型所预测的,我们发现I-Scei网站附近的序列的小变化对修复交叉点的频谱产生了重大影响。生物信息分析表明,这些修复差异出现在突破30个核苷酸内的瞬时形成环和发夹。我们还获得了“反式SD-MMEJ”的证据,涉及至少两个连续两轮的微观组学退火和在断裂部位的合成。这些结果突出了Alt-EJ修复的序列背景的重要性,并对基因组编辑和基因组进化具有重要意义。

著录项

  • 来源
    《Nucleic Acids Research》 |2017年第22期|共14页
  • 作者单位

    Tufts Univ Dept Biol 200 Boston Ave Suite 4700 Medford MA 02155 USA;

    Tufts Univ Dept Biol 200 Boston Ave Suite 4700 Medford MA 02155 USA;

    Tufts Univ Dept Biol 200 Boston Ave Suite 4700 Medford MA 02155 USA;

    Tufts Univ Dept Biol 200 Boston Ave Suite 4700 Medford MA 02155 USA;

    Tufts Univ Dept Biol 200 Boston Ave Suite 4700 Medford MA 02155 USA;

    Washington State Univ Sch Mol Sci P100 Dairy Rd Pullman WA 99164 USA;

    Washington State Univ Sch Mol Sci P100 Dairy Rd Pullman WA 99164 USA;

    Tufts Univ Dept Biol 200 Boston Ave Suite 4700 Medford MA 02155 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号