首页> 外文期刊>Nucleic Acids Research >Multiple RNA structures affect translation initiation and UGA redefinition efficiency during synthesis of selenoprotein P
【24h】

Multiple RNA structures affect translation initiation and UGA redefinition efficiency during synthesis of selenoprotein P

机译:多RNA结构在Selenoprotein P合成期间影响翻译起始和UGA重新定义效率

获取原文
获取原文并翻译 | 示例
           

摘要

Gene-specific expansion of the genetic code allows for UGA codons to specify the amino acid selenocysteine (Sec). A striking example of UGA redefinition occurs during translation of the mRNA coding for the selenium transport protein, selenoprotein P (SELENOP), which in vertebrates may contain up to 22 in-frame UGA codons. Sec incorporation at the first and downstream UGA codons occurs with variable efficiencies to control synthesis of full-length and truncated SELENOP isoforms. To address how the Selenop mRNA can direct dynamic codon redefinition in different regions of the same mRNA, we undertook a comprehensive search for phylogenetically conserved RNA structures and examined the function of these structures using cell-based assays, in vitro translation systems, and in vivo ribosome profiling of liver tissue from mice carrying genomic deletions of 3' UTR selenocysteine-insertion-sequences (SECIS1 and SECIS2). The data support a novel RNA structure near the start codon that impacts translation initiation, structures located adjacent to UGA codons, additional coding sequence regions necessary for efficient production of full-length SELENOP, and distinct roles for SECIS1 and SECIS2 at UGA codons. Our results uncover a remarkable diversity of RNA elements conducting multiple occurrences of UGA redefinition to control the synthesis of full-length and truncated SELENOP isoforms.
机译:遗传密码的基因特异性膨胀允许UGA密码子以指定氨基酸硒代半胱氨酸(SEC)。编码硒转运蛋白mRNA的翻译过程中出现UGA重新定义的一个突出的例子,硒蛋白P(SELENOP),其在脊椎动物中可含有最多22帧UGA密码子。在第一和下游UGA密码子掺入二段具有可变的效率,以全长的控制合成和截短的同种型SELENOP发生。为了解决Selenop mRNA可以如何直接在同一基因的不同区域动态密码重新定义,我们进行了系统发育保守的RNA结构进行全面搜索,并使用基于细胞的试验,体外翻译系统研究这些结构的功能,并且在体内核糖体肝脏组织从小鼠中仿形携带3' UTR硒代半胱氨酸插入序列(SECIS1和SECIS2)的基因组缺失。这些数据支持一种新型的RNA结构中的起始密码子即影响翻译起始附近,位于邻近UGA密码子,必要高效生产全长SELENOP的附加编码序列区域,并且在UGA密码子SECIS1和SECIS2不同的作用的结构。我们的研究结果揭开RNA元件进行重新定义UGA多次出现,以控制全长和截短SELENOP同种型的合成的一个显着的多样性。

著录项

  • 来源
    《Nucleic Acids Research》 |2017年第22期|共12页
  • 作者单位

    Harvard Med Sch Brigham &

    Womens Hosp Div Genet Dept Med Boston MA USA;

    Rutgers Robert Wood Johnson Med Sch Dept Biochem &

    Mol Biol Piscataway NJ USA;

    Univ Utah Dept Human Genet Salt Lake City UT 84112 USA;

    China Agr Univ State Key Lab Agrobiotechnol Beijing 100193 Peoples R China;

    Univ Coll Cork Biochem &

    Cell Biol Cork Ireland;

    Rutgers Robert Wood Johnson Med Sch Dept Biochem &

    Mol Biol Piscataway NJ USA;

    Univ Utah Dept Human Genet Salt Lake City UT 84112 USA;

    Univ Utah Dept Human Genet Salt Lake City UT 84112 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号