首页> 外文期刊>Current medicinal chemistry >Rational drug design and the discovery of the delta2-1,2,3-triazolines, a unique class of anticonvulsant and antiischemic agents.
【24h】

Rational drug design and the discovery of the delta2-1,2,3-triazolines, a unique class of anticonvulsant and antiischemic agents.

机译:合理的药物设计和delta2-1,2,3-triazolines的发现,delta2-1,2,3-triazolines是一类独特的抗惊厥药和抗缺血药。

获取原文
获取原文并翻译 | 示例
           

摘要

The delta(2)- 1,2,3- triazoline anticonvulsants (TRs) may be considered as representing a unique class of "built-in" heterocyclic prodrugs where the active "structure element" is an integral part of the ring system and can be identified only by a knowledge of their chemical reactivity and metabolism. Investigations on the metabolism and pharmacology of a lead triazoline, ADD17014 suggest that the triazolines function as "prodrugs" and exert their anticonvulsant activity by impairing excitatory amino acid (EAA) L-Glutamate (L-Glu) neurotransmission via a unique "dual-action" mechanism. While an active primary beta-amino alcohol metabolite from the parent prodrug acts as an N-methyl-D-aspartate (NMDA)/MK -801 receptor antagonist, the parent triazoline impairs the presynaptic release of L-Glu. Various pieces of theoretical reasoning and experimental evidence have led to the clucidation of the dual-action mechanism. Based on the unique chemistry of the triazolines, and their metabolic pathways, biotransformation products of TRs were predicted to be the beta-amino alcohols V and VA, the alpha-amino acid VI, the triazole VII, the aziridine VIII and the ketimine IX. In vivo and in vitro pharmacological studies of the TR and potential metabolites, along with a full quantitative urinary metabolic profiling of TR indicated the primary beta-amino alcohol V as the active species. It was the only compound that inhibited the specific binding of [3H]MK-801 to the MK-801 site, 56% at 10 micro M drug concentration, but itself had no anticonvulsant activity, suggesting TR acted as a prodrug. Three metabolites were identified; V was the most predominant (45.7 +/- 7.6) % of administered drug, with lesser amounts of VA, (17.3 +/- 5.1) % and very minor amounts of aziridine VIII (4.0 +/- 0.02)%. Since only VIII can yield VA, its formation indicated that the biotransformation of TR occurred, at least in part, through aziridine. No amino acid metabolite was detected, which implied that no in vivo oxidation of V or oxidative biotransformation of TR or aziridine by hydroxylation at the methylene group occurred. While triazoline significantly decreased Ca(2+) -dependent, k(+)-evoked L-Glu release (83% at 100 micro M drug concentration ), some triazolines showed an augmentation of 50-63%, in the Cl(-) channel activity, a useful membrane action that reduces the excessive L-Glu release that occurs during epileptic seizures. The high anticonvulsant activity of TRs in a variety of seizure models including their effectiveness in the kindling model of complex partial seizures may be due to their unique dual-action mechanism whereby the TR and V together effectively impair both pre- and postsynaptic aspects of EAA neurotransmission; thus the TRs have clinical potential in the treatment of complex partial epilepsy which is refractory to currently available drugs. Since there is strong evidence that L-Glu plays an important role in human epilepsy as well as in brain ischemia/stroke, and since the TRs act by inhibiting EAA neurotransmission, it was logical to expect that the anticonvulsant TRs may evince beneficial therapeutic potential in cerebral ischemia resulting from stroke as well. And indeed, several TRs, when tested in the standard gerbil model of global ischemia did evince remarkable ability to prevent neuronal death.
机译:可以将delta(2)-1,2,3-三唑啉抗惊厥药(TRs)视为代表一类独特的“内置”杂环前药,其中活性“结构元素”是环系统的组成部分,并且可以只能通过了解其化学反应性和新陈代谢来识别。对三唑啉铅ADD17014的代谢和药理研究表明,三唑啉起“前药”的作用,并通过独特的“双重作用”损害兴奋性氨基酸(EAA)的L-谷氨酸(L-Glu)神经传递而发挥其抗惊厥活性。 ”机制。来自母体前药的活性伯-氨基醇代谢物起N-甲基-D-天冬氨酸(NMDA)/ MK -801受体拮抗剂的作用,母体三唑啉损害L-Glu的突触前释放。各种理论推理和实验证据已导致对双重作用机理的阐明。基于三唑啉的独特化学性质及其代谢途径,TR的生物转化产物预计为β-氨基醇V和VA,α-氨基酸VI,三唑VII,氮丙啶VIII和酮亚汀IX。 TR和潜在代谢产物的体内和体外药理研究以及TR的完整定量尿代谢谱分析表明,主要的β-氨基醇V是活性物质。它是唯一抑制[3H] MK-801与MK-801位点特异性结合的化合物,在10 micro M的药物浓度下抑制率为56%,但其本身没有抗惊厥活性,这表明TR可以作为前药。鉴定了三种代谢物; V是给药药物中最主要的(45.7 +/- 7.6)%,VA的量较少,为(17.3 +/- 5.1)%,氮丙啶VIII的量很少(4.0 +/- 0.02)%。由于仅VIII可产生VA,因此其形成表明TR的生物转化至少部分通过氮丙啶发生。没有检测到氨基酸代谢物,这意味着没有发生体内V氧化或亚甲基羟基化导致TR或氮丙啶发生氧化生物转化。尽管三唑啉显着降低了Ca(2+)依赖性,k(+)引起的L-Glu释放(在100 micro M药物浓度下为83%),但某些三唑啉在Cl(-)中却增加了50-63%。通道活性,一种有用的膜作用,可减少癫痫发作期间发生的过量L-Glu释放。 TRs在多种癫痫发作模型中的高抗惊厥活性,包括它们在复杂部分发作的点燃模型中的有效性,可能是由于它们独特的双重作用机制,因此TR和V共同有效地破坏了EAA神经传递的突触前和突触后。 ;因此,TRs在治疗复杂的部分性癫痫方面具有临床潜力,而这种癫痫病对目前可用的药物是难治的。由于有确凿的证据表明L-Glu在人类癫痫以及脑缺血/中风中起着重要作用,并且由于TRs通过抑制EAA神经传递而起作用,因此可以预期,抗惊厥TRs可能会证明其对人类癫痫的治疗潜力。中风引起的脑缺血。实际上,当在全球缺血的标准沙鼠模型中进行测试时,几个TR确实显示出了显着的预防神经元死亡的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号