首页> 外文期刊>Nucleic Acids Research >Maintenance of translational elongation rate underlies the survival of Escherichia coli during oxidative stress
【24h】

Maintenance of translational elongation rate underlies the survival of Escherichia coli during oxidative stress

机译:转化伸长率的维持下潜在氧化应激期间大肠杆菌的存活率下降

获取原文
获取原文并翻译 | 示例
           

摘要

To cope with harsh circumstances, bacterial cells must initiate cellular stress response programs, which demands the de novo synthesis of many stress defense proteins. Reactive oxygen species (ROS) is a universal environmental stressor for both prokaryotic cells and eukaryotic cells. However, the physiological burden that limits the survival of bacterial cells during oxidative stress remains elusive. Here we quantitatively characterize the cell growth and translational elongation rate of Escherichia coli cells treated with different doses of hydrogen peroxide. Cell growth is immediately arrested by low to moderate levels of hydrogen peroxide, but completely recovers after a certain lag time. The lag time depends positively on the dose of hydrogen peroxide. During the lag time, translational elongation rate drops by as much as similar to 90% at initial stage and recovers to its normal state later, a phenomenon resulting from the dramatic alteration in cellular tRNA pools during oxidative stress. However, translational elongation is completely stalled at a certain threshold-level of hydrogen peroxide, at which cells ultimately fail to resume growth. Although the mRNA transcription of oxidative defense genes in oxyR regulon is dramatically induced upon hydrogen peroxide treatment, the extreme slow-down of translational elongation during high levels of hydrogen peroxide has severely compromised the timely synthesis of those oxidative defense proteins. Our study demonstrates that the tRNA-limited translational elongation is a key physiological bottleneck that the bacteria must overcome to counteract ROS, and the maintenance of translational elongation rate for timely synthesis of stress defense proteins is crucial for cells to smoothly get over the oxidative stress.
机译:为了应对恶劣的情况,细菌细胞必须启动细胞应激响应方案,这要求德诺人为许多压力防御蛋白质合成。反应性氧物种(ROS)是用于原核细胞和真核细胞的通用环境压力源。然而,限制细菌细胞在氧化应激期间的生理负担仍然难以捉摸。在这里,我们定量表征了用不同剂量的过氧化氢处理的大肠杆菌细胞的细胞生长和平移伸长率。细胞生长立即被低至中等过氧化氢水平被捕,但在一定的滞后时间后完全恢复。滞后时间依赖于过氧化氢的剂量。在滞后时间期间,平移伸长率在初始阶段的初始阶段等于90%并恢复到其正常状态,是由于在氧化应激期间蜂窝织TRNA池的显着变化产生的现象。然而,在某种阈值过氧化氢水平的情况下完全停滞的平移伸长率,在这种氯化物水平上,细胞最终未能恢复生长。尽管在过氧化氢处理后氧化氧化基因的mRNA转录在过氧化氢处理时,在高水平的过氧化氢期间的平移伸长率的极端缓慢已经严重损害了那些氧化防御蛋白的及时合成。我们的研究表明,TRNA限制性的平移伸长率是细菌必须克服ROS的关键生理瓶颈,并且维持用于及时合成压力防御蛋白的转化伸长率为细胞对于细胞来平稳地越过氧化应激至关重要。

著录项

  • 来源
    《Nucleic Acids Research》 |2019年第14期|共13页
  • 作者

    Zhu Manlu; Dai Xiongfeng;

  • 作者单位

    Cent China Normal Univ Sch Life Sci Wuhan Hubei Peoples R China;

    Cent China Normal Univ Sch Life Sci Wuhan Hubei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号