...
首页> 外文期刊>Nanotechnology >Computational study of precision nitrogen doping on graphene nanoribbon edges
【24h】

Computational study of precision nitrogen doping on graphene nanoribbon edges

机译:石墨烯纳米梁掺杂精密氮掺杂的计算研究

获取原文
获取原文并翻译 | 示例

摘要

Nitrogen doping in graphene is important for applications spanning from electronics to metal-free electrocatalysts. Despite much experimental study, limited theoretic work has been done in understanding the mechanism of the doping process, especially from a precision perspective. Herein, we present a computational study on precision nitrogen doping on edges of graphene nanoribbons (GNRs) by combining molecular dynamics (MD) simulation at a time scale of 40 ns and density function theory (DFT) calculation. In the MD study both ammonia and acetonitrile were used as nitrogen sources. MD results revealed that the ammonia produces almost all amine-type dopants, while the acetonitrile produces a considerable amount of pyrrolic and pyridinic nitrogen dopants which are beneficial to electronics and electrocatalysts. Results also show that the concentration of pyrrolic and pyridinic dopants can be precisely controlled by the edge geometries of the GNRs. Furthermore, DFT calculation illustrated the reaction mechanism in these different types of the GNRs when using acetonitrile as the nitrogen source. The calculated energies in different reaction stages indicate the stability of dopants on various GNRs, agreeing well with the MD results. The disclosed mechanism of controllable nitrogen doping on the edges of the GNRs would provide guidance to experimental realization, paving new routes to widespread applications.
机译:石墨烯中的氮掺杂对于从电子器件到无金属电催化剂的应用非常重要。尽管有很多实验研究,但在理解兴奋剂过程的机制方面取得了有限的理论作品,特别是从精确的角度来看。这里,我们通过在40 ns和密度函数理论(DFT)计算的时间等级结合分子动力学(MD)模拟来介绍关于石墨烯纳米纤维(GNRS)边缘的精密氮掺杂的计算研究。在MD研究中,氨和乙腈均用作氮源。 MD结果表明,氨质产生几乎所有胺类掺杂剂,而乙腈产生相当大量的丙吡咯和吡啶氮掺杂剂,这些吡啶氮掺杂剂是有益的电子和电催化剂。结果还表明,吡咯和吡啶掺杂剂的浓度可以精确地由GNR的边缘几何形状控制。此外,当使用乙腈作为氮源时,DFT计算在这些不同类型的GNR中示出了反应机制。不同反应阶段的计算能量表明掺杂剂对各种GNR的稳定性,与MD结果良好。 GNRS边缘上所公开的可控氮气掺杂机制将为实验性实现提供指导,为广泛的应用铺平新的路线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号