...
首页> 外文期刊>Nanotechnology >The aggregation of Mn2+, its d-d transition in CdS:Mn(II) nanobelts and bound magnetic polaron formation at room temperature
【24h】

The aggregation of Mn2+, its d-d transition in CdS:Mn(II) nanobelts and bound magnetic polaron formation at room temperature

机译:Mn2 +的聚集,其CDS中的D-D转换:Mn(ii)纳米螺纹和室温下的结合磁极聚焦形成

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Tuning the photoluminescence (PL) and magnetic properties of 1D semiconductor nanostructures is extremely important in processing light, improving the speed and storage capacity for optoelectronic and spintronic applications. Here, we have reported the 1D Cd1-xMnxS (x = 0-0.102) nanobelts (NBs) and investigated their optical and magnetic properties. These NBs were synthesized by chemical vapor deposition method. The successful incorporation of Mn ions into an individual CdS NB has been confirmed through several characterization tools: SEM-EDX analysis, significant higher angle and phonon mode shifts were observed in the XRD and Raman spectra. Room-temperature PL showed two emission peaks at the near band edge. The first peak is related to exciton magnetic polaron (EMP) and the second one appeared on the low-energy side of the band edge emission and showed very large red-shift (similar to 33 nm) compared to EMP, which is attributed to bound magnetic polaron (BMP). BMP emission was detected for the first time in CdS low-dimensional nanostructures. Our study showed that Mn ions tuned CdS emission more than 400 nm (from 512 to 929 nm) covering the whole visible spectral region up to the near infrared region for the first time, and significantly boosted the room-temperature ferromagnetism, which shows promise for optoelectronic and spintronic applications.
机译:调节光致发光(PL)和1D半导体纳米结构的磁性在加工光中非常重要,提高了光电和旋转式应用的速度和存储能力。这里,我们报道了1D CD1-XMNX(X = 0-0.102)纳米螺纹(NBS)并研究了它们的光学和磁性。通过化学气相沉积方法合成这些NB。通过多个表征工具确认了将Mn离子的成功结合到单个CDS NB中:在XRD和拉曼光谱中观察到显着的高角度和声子模式偏移。室温PL在近带边缘显示两个发射峰。第一峰与Exciton磁极极化(EMP)有关,第二个峰值出现在带边的低能量侧发射,并且与EMP相比,与EMP相比,与EMP相比显示出非常大的红移(类似于33nm),其归因于绑定磁极极化(BMP)。在CDS低维纳米结构中首次检测到BMP发射。我们的研究表明,MN离子调谐CDS发射超过400nm(从512至929nm)首次覆盖整个可见光谱区域,并首次升高到近红外区域,并显着提高了房间温度铁磁性,这表示承诺光电和旋转式应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号