首页> 外文期刊>Nanotechnology >Manipulating nanoscale structure to control functionality in printed organic photovoltaic, transistor and bioelectronic devices
【24h】

Manipulating nanoscale structure to control functionality in printed organic photovoltaic, transistor and bioelectronic devices

机译:操纵纳米级结构以控制印刷有机光伏,晶体管和生物电子器件的功能

获取原文
获取原文并翻译 | 示例
       

摘要

Printed electronics is simultaneously one of the most intensely studied emerging research areas in science and technology and one of the fastest growing commercial markets in the world today. For the past decade the potential for organic electronic (OE) materials to revolutionize this printed electronics space has been widely promoted. Such conviction in the potential of these carbon-based semiconducting materials arises from their ability to be dissolved in solution, and thus the exciting possibility of simply printing a range of multifunctional devices onto flexible substrates at high speeds for very low cost using standard roll-to-roll printing techniques. However, the transition from promising laboratory innovations to large scale prototypes requires precise control of nanoscale material and device structure across large areas during printing fabrication. Maintaining this nanoscale material control during printing presents a significant new challenge that demands the coupling of OE materials and devices with clever nanoscience fabrication approaches that are adapted to the limited thermodynamic levers available. In this review we present an update on the strategies and capabilities that are required in order to manipulate the nanoscale structure of large area printed organic photovoltaic (OPV), transistor and bioelectronics devices in order to control their device functionality. This discussion covers a range of efforts to manipulate the electroactive ink materials and their nanostructured assembly into devices, and also device processing strategies to tune the nanoscale material properties and assembly routes through printing fabrication. The review finishes by highlighting progress in printed OE devices that provide a feedback loop between laboratory nanoscience innovations and their feasibility in adapting to large scale printing fabrication. The ability to control material properties on the nanoscale whilst simultaneously printing functional devices on the square metre scale is prompting innovative developments in the targeted nanoscience required for OPV, transistor and biofunctional devices.
机译:印刷电子产品同时是学习科学技术的最强烈研究的新兴研究领域之一,也是当今世界上最快的商业市场之一。在过去的十年中,有机电子(OE)材料的旨在彻底推广这款印刷电子空间的潜力已被广泛促进。这些碳基半导体材料的潜能的这种定罪产生了它们溶解在溶液中的能力,因此在使用标准卷至非常低的成本下,简单地将多功能器件的令人触发的多功能装置印刷到柔性基板上的激动的可能性。 -Roll打印技术。然而,从有希望的实验室创新到大规模原型的过渡需要精确控制印刷制造期间大面积的纳米级材料和器件结构。在印刷过程中保持这种纳米级材料控制具有重要的新挑战,要求OE材料和装置与巧妙的纳米科学制造方法的耦合,其适用于可用的有限热力学杆。在本报告中,我们提出了一种更新,以便操纵大面积印刷有机光伏(OPV),晶体管和生物电流装置的纳米级结构所需的策略和能力,以便控制其设备功能。该讨论涵盖将电活性油墨材料及其纳米结构化组件操纵到装置中的一系列努力,以及通过印刷制造来调谐纳米级材料特性和组装路线的装置处理策略。审查通过突出显示在印刷OE设备中的进展,提供实验室纳米科学创新之间的反馈环路及其在适应大规模印刷制造方面的可行性。在纳米级上控制材料性能的能力,同时打印方形仪表规模上的功能装置正在促使OPV,晶体管和生物功能装置所需的目标纳米科学中的创新开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号