...
首页> 外文期刊>Nanotechnology >Monolithic 3D printing of embeddable and highly stretchable strain sensors using conductive ionogels
【24h】

Monolithic 3D printing of embeddable and highly stretchable strain sensors using conductive ionogels

机译:使用导电IOOGEL的可嵌入和高度拉伸应变传感器的单片3D印刷

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Medical training simulations that utilize 3D-printed, patient-specific tissue models improve practitioner and patient understanding of individualized procedures and capacitate pre-operative, patient-specific rehearsals. The impact of these novel constructs in medical training and pre-procedure rehearsals has been limited, however, by the lack of effectively embedded sensors that detect the location, direction, and amplitude of strains applied by the practitioner on the simulated structures. The monolithic fabrication of strain sensors embedded into lifelike tissue models with customizable orientation and placement could address this limitation. The demonstration of 3D printing of an ionogel as a stretchable, piezoresistive strain sensor embedded in an elastomer is presented as a proof-of-concept of this integrated fabrication for the first time. The significant hysteresis and drift inherent to solid-phase piezoresistive composites and the dimensional instability of low-hysteresis piezoresistive liquids inspired the adoption of a 3D-printable piezoresistive ionogel composed of reduced graphene oxide and an ionic liquid. The shear-thinning rheology of the ionogel obviates the need to fabricate additional structures that define or contain the geometry of the sensing channel. Sensors are printed on and subsequently encapsulated in polydimethylsiloxane (PDMS), a thermoset elastomer commonly used for analog tissue models, to demonstrate seamless fabrication. Strain sensors demonstrate geometry-and strain-dependent gauge factors of 0.54-2.41, a high dynamic strain range of 350% that surpasses the failure strain of most dermal and viscus tissue, low hysteresis (<3.5% degree of hysteresis up to 300% strain) and baseline drift, a single-value response, and excellent fatigue stability (5000 stretching cycles). In addition, we fabricate sensors with stencil-printed silver/PDMS electrodes in place of wires to highlight the potential of seamless integration with printed electrodes. The compositional tunability of ionic liquid/graphene-based composites and the shear-thinning rheology of this class of conductive gels endows an expansive combination of customized sensor geometry and performance that can be tailored to patient-specific, high-fidelity, monolithically fabricated tissue models.
机译:利用3D印刷的患者特异性组织模型的医疗训练模拟改善了从业者和患者对个性化程序的理解,并且能够预操作,特定的患者特异性排练。这些新构建物在医疗培训和冲击预过程排练已经限定,然而,由于缺乏该检测的位置,方向,以及由从业人员上模拟的结构施加菌株的振幅有效地嵌入的传感器。嵌入具有可定制方向和放置的终型组织模型的菌株传感器的单片制造可以解决这种限制。将IONOGEL的3D印刷作为可​​伸展的压阻式应变传感器的示范,其嵌入弹性体中作为该综合制造的概念证据首次呈现。固相压阻复合材料固有的显着滞后和漂移和低滞后压阻液体的尺寸不稳定性激发了采用由石墨烯和离子液体组成的3D可打印的压阻孔凝胶。 IONOGEL的剪切稀疏流变学避开了制造限定或包含感测通道几何形状的附加结构的需要。传感器在聚二甲基硅氧烷(PDMS)中印刷并随后封装在多甲基硅氧烷(PDMS)中,常用于模拟组织模型的热固性弹性体,以展示无缝制造。应变传感器展示0.54-2.41,350%,胜过大多数皮肤和内脏组织,低滞后(<滞后高达3.5%程度至300%应变的破坏应变高动态应变范围几何和应变相关的应变系数)和基线漂移,单值响应,以及优异的耐疲劳稳定性(5000个拉伸循环)。此外,我们制造具有模版印刷的银电极PDMS传感器/到位线的突出无缝集成的具有印刷电极的电位。离子液体/石墨烯基复合材料的组成可调谐性,这类导电凝胶的剪切稀化流变赋予定制传感器的几何形状和性能的一个广阔的组合可以针对患者特异性,高保真,单片制备的组织模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号