首页> 外文期刊>Nanotechnology >Monolithic 3D printing of embeddable and highly stretchable strain sensors using conductive ionogels
【24h】

Monolithic 3D printing of embeddable and highly stretchable strain sensors using conductive ionogels

机译:使用导电IOOGEL的可嵌入和高度拉伸应变传感器的单片3D印刷

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Medical training simulations that utilize 3D-printed, patient-specific tissue models improve practitioner and patient understanding of individualized procedures and capacitate pre-operative, patient-specific rehearsals. The impact of these novel constructs in medical training and preprocedure rehearsals has been limited, however, by the lack of effectively embedded sensors that detect the location, direction, and amplitude of strains applied by the practitioner on the simulated structures. The monolithic fabrication of strain sensors embedded into lifelike tissue models with customizable orientation and placement could address this limitation. The demonstration of 3D printing of an ionogel as a stretchable, piezoresistive strain sensor embedded in an elastomer is presented as a proof-of-concept of this integrated fabrication for the first time. The significant hysteresis and drift inherent to solid-phase piezoresistive composites and the dimensional instability of low-hysteresis piezoresistive liquids inspired the adoption of a 3D-printable piezoresistive ionogel composed of reduced graphene oxide and an ionic liquid. The shear-thinning rheology of the ionogel obviates the need to fabricate additional structures that define or contain the geometry of the sensing channel. Sensors are printed on and subsequently encapsulated in polydimethylsiloxane (PDMS), a thermoset elastomer commonly used for analog tissue models, to demonstrate seamless fabrication. Strain sensors demonstrate geometry- and strain-dependent gauge factors of 0.54-2.41, a high dynamic strain range of 350% that surpasses the failure strain of most dermal and viscus tissue, low hysteresis (<3.5% degree of hysteresis up to 300% strain) and baseline drift, a single-value response, and excellent fatigue stability (5000 stretching cycles). In addition, we fabricate sensors with stencil-printed silver/PDMS electrodes in place of wires to highlight the potential of seamless integration with printed electrode
机译:利用3D印刷的患者特异性组织模型的医疗训练模拟改善了从业者和患者对个性化程序的理解,并且能够预操作,特定的患者特异性排练。然而,这些新颖构建在医学训练和预持续排练中的影响受到了检测从业者在模拟结构上施加的菌株的位置,方向和幅度的有效嵌入式传感器的限制。嵌入具有可定制方向和放置的终型组织模型的菌株传感器的单片制造可以解决这种限制。将IONOGEL的3D印刷作为可​​伸展的压阻式应变传感器的示范,其嵌入弹性体中作为该综合制造的概念证据首次呈现。固相压阻复合材料固有的显着滞后和漂移和低滞后压阻液体的尺寸不稳定性激发了采用由石墨烯和离子液体组成的3D可打印的压阻孔凝胶。 IONOGEL的剪切稀疏流变学避开了制造限定或包含感测通道几何形状的附加结构的需要。传感器在聚二甲基硅氧烷(PDMS)中印刷并随后封装在多甲基硅氧烷(PDMS)中,常用于模拟组织模型的热固性弹性体,以展示无缝制造。应变传感器显示0.54-2.41的几何形状和应变依赖性量因子,高动态应变范围为350%,超过大多数皮肤和粘液组织的失效应变,低滞后(<3.5%滞后高达300%菌株)基线漂移,单值响应和出色的疲劳稳定性(5000拉伸循环)。此外,我们制造了用模板印刷的银/ PDMS电极的传感器代替电线,以突出与印刷电极无缝集成的电位

著录项

  • 来源
    《Nanotechnology》 |2019年第36期|共13页
  • 作者单位

    Department of Material Science &

    Engineering University of Washington Seattle WA 98195-2120 United States of America;

    Center for Research in Education and Simulation Technologies University of Washington Seattle WA98195 United States of America;

    Department of Material Science &

    Engineering University of Washington Seattle WA 98195-2120 United States of America;

    Department of Material Science &

    Engineering University of Washington Seattle WA 98195-2120 United States of America;

    Department of Material Science &

    Engineering University of Washington Seattle WA 98195-2120 United States of America;

    Center for Research in Education and Simulation Technologies University of Washington Seattle WA98195 United States of America;

    Center for Research in Education and Simulation Technologies University of Washington Seattle WA98195 United States of America;

    Department of Material Science &

    Engineering University of Washington Seattle WA 98195-2120 United States of America;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    3D printing; stretchable electronics; medical simulation; reduced graphene oxide; ionic liquids; strain sensor; ionogels;

    机译:3D打印;可拉伸电子;医学仿真;还原石墨烯;离子液体;应变传感器;离子;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号