...
首页> 外文期刊>Nano letters >Reversible MoS2 Origami with Spatially Resolved and Reconfigurable Photosensitivity
【24h】

Reversible MoS2 Origami with Spatially Resolved and Reconfigurable Photosensitivity

机译:可逆MOS2折纸,具有空间分辨和可重新配置的光敏性

获取原文
获取原文并翻译 | 示例
           

摘要

Two-dimensional layered materials (2DLMs) have been extensively studied in a variety of planar optoelectronic devices. Three-dimensional (3D) optoelectronic structures offer unique advantages including omnidirectional responses, multipolar detection, and enhanced light-matter interactions. However, there has been limited success in transforming monolayer 2DLMs into reconfigurable 3D optoelectronic devices due to challenges in microfabrication and integration of these materials in truly 3D geometries. Here, we report an origami-inspired self-folding approach to reversibly transform monolayer molybdenum disulfide (MoS2) into functional 3D optoelectronic devices. We pattern and integrate monolayer MoS2 and gold (Au) onto differentially photo-cross-linked thin polymer (SU8) films. The devices reversibly self-fold due to swelling gradients in the SU8 films upon solvent exchange. We fabricate a wide variety of optically active 3D MoS2 microstructures including pyramids, cubes, flowers, dodecahedra, and Miura-oris, and we simulate the self-folding mechanism using a coarse-grained mechanics model. Using finite-difference time-domain (FDTD) simulation and optoelectronic characterization, we demonstrate that the 3D self-folded MoS2 structures show enhanced light interaction and are capable of angle-resolved photodetection. Importantly, the structures are also reversibly reconfigurable upon solvent exchange with high tunability in the optical detection area. Our approach provides a versatile strategy to reversibly configure 2D materials in 3D optoelectronic devices of broad relevance to flexible and wearable electronics, biosensing, and robotics.
机译:在各种平面光电器件中已经广泛研究了二维分层材料(2DLMS)。三维(3D)光电子结构提供独特的优点,包括全向响应,多极检测和增强的灯具相互作用。然而,由于在真正的3D几何形状中的微制造和这些材料的整合,将单层2DLMS转换为可重构的3D光电器件中的重新配置3D光电器件的成功有限。在这里,我们报告了一种折纸启动的自折叠方法,可逆地将单层钼二硫化物(MOS2)转化为功能3D光电器件。我们将单层MOS2和金(AU)图案化并将单层MOS2和金(AU)集成到差异上光交联的薄聚合物(SU8)膜上。由于SU8薄膜在溶剂交换时,该装置由于SU8薄膜的溶胀梯度而可逆地自折。我们制造各种光学活跃的3D MOS2微观结构,包括金字塔,立方体,花卉,十二章,和Miura-Oris,我们使用粗粒机械模型模拟自折叠机构。使用有限差分时域(FDTD)仿真和光电表征,我们证明了3D自折叠MOS2结构显示增强的光相互作用,并且能够具有角度分辨的光电检测。重要的是,结构也在光学检测区域中具有高可调性的溶剂交换时可逆地可重新配置。我们的方法提供了一种多功能的策略,可逆地配置3D光电器件中的2D材料,其具有柔性和可穿戴电子设备,生物传感器和机器人的广泛相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号