...
首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Tensile Properties of Medium Mn Steel with a Bimodal UFG alpha plus gamma and Coarse delta-Ferrite Microstructure
【24h】

Tensile Properties of Medium Mn Steel with a Bimodal UFG alpha plus gamma and Coarse delta-Ferrite Microstructure

机译:介质Mn钢与双峰UFGα加γ粗δ-铁氧体微结构的拉伸性能

获取原文
获取原文并翻译 | 示例
           

摘要

While the tensile strength and elongation obtained for medium Mn steel would appear to make it a candidate material in applications which require formable ultra-high strength materials, many secondary aspects of the microstructure-properties relationships have not yet been given enough attention. In this contribution, the microstructural and tensile properties of medium Mn steel with a bimodal microstructure consisting of an ultra-fine grained ferrite + austenite constituent and coarse-grained delta-ferrite are therefore reviewed in detail. The tensile properties of ultra-fine-grained intercritically annealed medium Mn steel reveal a complex dependence on the intercritical annealing temperature. This dependence is related to the influence of the intercritical annealing temperature on the activation of the plasticity-enhancing mechanisms in the microstructure. The kinetics of deformation twinning and strain-induced transformation in the ultra-fine grained austenite play a prominent role in determining the strain hardening of medium Mn steel. While excellent strength-ductility combinations are obtained when deformation twinning and strain-induced transformation occur gradually and in sequence, large elongations are also observed when strain-induced transformation plasticity is not activated. In addition, the localization of plastic flow is observed to occur in samples after intercritical annealing at intermediate temperatures, suggesting that both strain hardening and strain rate sensitivity are influenced by the properties of the ultra-fine-grained austenite.
机译:虽然对于中Mn钢的抗拉强度和伸长率来说,似乎使其成为需要可成型超高强度材料的应用中的候选材料,但微观结构的许多次要方面尚未得到足够的关注。因此,详细回顾了由由超细颗粒铁氧体+奥氏体组分和粗粒醇 - 铁素体组成的培养基Mn钢的微观结构和拉伸性能。超细粒细胞间退火的培养基Mn钢的拉伸性能揭示了对跨临界退火温度的复杂依赖性。该依赖性与跨临界退火温度对微观结构中的可塑性增强机制的影响的影响有关。超细颗粒奥氏体在超细颗粒奥氏体中变形和应变诱导的转化的动力学在确定中Mn钢的应变硬化方面发挥着突出作用。虽然当变形孪氮和应变诱导的转化逐渐发生并且依次发生时,获得优异的强度 - 延展性组合,但是当应变诱导的转化可塑性未被激活时,也观察到大的伸长率。此外,观察到塑料流动的定位在中间温度下临界退火后发生样品,表明应变硬化和应变速率灵敏度受到超细颗粒奥氏体的性质的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号