...
首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Process-Defect-Structure-Property Correlations During Laser Powder Bed Fusion of Alloy 718: Role of In Situ and Ex Situ Characterizations
【24h】

Process-Defect-Structure-Property Correlations During Laser Powder Bed Fusion of Alloy 718: Role of In Situ and Ex Situ Characterizations

机译:合金激光粉床融合过程中的过程 - 缺陷结构 - 性质相关性718:原位和前所特征的作用

获取原文
获取原文并翻译 | 示例

摘要

Components made by laser powder bed fusion (L-PBF) additive processes require extensive trial and error optimization to minimize defects and arrive at targeted microstructure and properties. In this work, in situ infrared thermography and ex situ surface roughness measurements were explored as methodologies to ensure Inconel (R) 718-part quality. For a given laser energy of 200 Watts, prismatic samples were produced with different exposure times (80 to 110 mu s) and point spacings (80 to 110 mu m). The infrared intensities from laser-material interaction zones were measured spatially and temporally. The conditions leading to higher IR intensity and lowest surface roughness values correlated well with less porosity and coarse solidification grain structure. The transition from highly columnar to misoriented growth is attributed to changes in thermal gradients and liquid-solid interface velocities. Hardness measurements and electron microscopy of the as-processed and post-processed heat-treated samples show complex transitions in microstructural states including the heavily dislocated FCC matrix, reduction of dislocation density, and copious precipitation, respectively. These results show that the geometry-process-structure-property correlations are dynamic, and they cascade depending on the transitions of phase states from powder to liquid to solid, as well as phase decompositions and deformations within the solid FCC phase. Validity of using analytical weld process models to describe the above phenomena is also highlighted. (C) The Minerals, Metals & Materials Society and ASM International 2018.
机译:激光粉末融合(L-PBF)添加过程所制作的组件需要广泛的试验和误差优化,以最大限度地减少缺陷并到达靶向微观结构和性质。在这项工作中,原位红外热成像和出原位表面粗糙度测量被探索为方法,以确保(r)718部分质量。对于200瓦的给定激光能量,用不同的曝光时间(80至110μm)和点间距(80至110μm)产生棱柱形样品。来自激光 - 材料相互作用区域的红外强度在空间上和时间测量。导致较高的IR强度和最低表面粗糙度值的条件具有较少的孔隙率和粗凝固晶粒结构良好。从高度柱状到错位的增长的过渡归因于热梯度和液体固体界面速度的变化。诸如加工后和后处理的热处理样品的硬度测量和电子显微镜显示出在包括重脱位的FCC基质的微观结构状态下的复杂转变,分别降低位错密度和大量沉淀。这些结果表明,几何过程 - 结构 - 结构性质相关性是动态的,并且根据从粉末到液体到固体的相位状态的转变,以及固体FCC阶段的相位分解和变形,它们级联。还突出了使用分析焊接过程模型来描述上述现象的有效性。 (c)2018年矿物质,金属和材料协会和ASM国际。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号