首页> 外文期刊>Medical Physics >Detective efficiency of photon counting detectors with spectral degradation and crosstalk
【24h】

Detective efficiency of photon counting detectors with spectral degradation and crosstalk

机译:光子计数探测器的探测效率和串扰

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Purpose Charge sharing and migration of scattered and fluorescence photons in an energy discriminating photon counting detector (PCD) degrade the detector’s energy response and can cause a single incident photon to be registered as multiple events at different energies among neighboring pixels, leading to spatio‐energetic correlation. Such a correlation in conventional linear, space‐invariant imaging system can be usefully characterized by the frequency dependent detective quantum efficiency DQE(f). Defining and estimating DQE(f) for PCDs in a manner consistent with that of conventional detectors is complicated because the traditional definition of DQE(f) does not address spectral information. Methods We introduce the concept of presampling spectroscopic detective quantum efficiency, DQE s (f), and present an analysis of it for CdTe PCDs using a spatial domain method that starts from a previously described analytic computation of spatio‐energetic crosstalk. DQE s (f) is estimated as the squared signal‐to‐noise ratio of the amplitude of a small‐signal sinusoidal modulation of the object (cortical bone) thickness at frequency f estimated using data from the detector under consideration compared that obtained from the photon distribution incident on the detector. DQE s for material decomposition (spectral) and effective monoenergetic imaging tasks for different pixel pitch is studied based on the multipixel Cramér‐Rao lower bound (CRLB) that accounts for inter pixel basis material correlation. Effective monoenergetic DQE s is estimated from the CRLB of a linear weighted combination of basis materials, and its energy dependence is also studied. Results Zero frequency DQE s for the spectral task was ~18%, 25%, and 34% for 250?μm, 500?μm, and 1?mm detector pixels respectively. Inter pixel signal correlation results in positive noise correlation between same basis material estimates of neighboring pixels, resulting in least impact on DQE s at the detector’s Nyquist frequency. Effective monoenergetic DQE s (0) at the optimal energy is relatively tolerant of spectral degradation (85–91% depending on pixel size), but is highly dependent on the selected effective energy, with maximum variation (in 250?μm pixels) of 17% to 85% for effective energy between 30 to 120?keV. Conclusions Our results show that spatio‐energetic correlations degrade DQE s (f) beyond what is lost by poor spectral response in a single detector element. The positive correlation between computed single basis material values in neighboring pixels results in the penalty to DQE s (f) to be the least at the Nyquist frequency of the detector. It is desirable to reduce spectral degradation and crosstalk to minimize the impact on system performance. Larger pixels sizes have better spatio‐energetic response due to lower charge sharing and escape of scatter and K‐fluorescence photons, and therefore higher DQE s (0). Effective monoenergetic DQE s (0) at the optimal energy is much less affected by spectral degradation and crosstalk compared to DQE s for spectral tasks.
机译:目的电荷共享和在能量散射和荧光光子判别光子计数探测器(PCD)降低检测器的能量响应,并可能导致单个入射光子要被登记为以不同的能量的多个事件相邻像素之间的迁移,从而导致空间 - 高能相关性。在传统的线性,空间不变成像系统这样的相关性可以被有效地,其特征在于与频率相关的检测量子效率DQE(F)。定义和在与常规检测器的相一致的方式的PCD估计DQE(F)是复杂的,因为DQE(F)的传统定义没有解决的光谱信息。方法介绍了presampling分光检测量子效率,DQE S(F)的概念,并且使用空间域方法呈现用于CdTe的个人通讯装置的它分析从空间 - 高能串扰的先前所描述的分析计算开始。 DQE S(F)被估计为在频率对象(皮质骨)厚度的一个小信号的正弦调制的幅度的平方信噪比使用来自检测器的数据在考虑比较,从所获得的˚F估计光子分布入射到探测器上。 DQE S代表材料分解(光谱)和单能有效成像任务针对不同像素间距研究了基于所述多像素克拉美 - 罗下限(CRLB),其占象素间基础材料的相关性。有效单能DQE s选自基础材料的线性加权组合的CRLB估计,和其能量的依赖性还研究。结果零频率DQE S为光谱的任务是分别〜18%,25%,250?微米,500?微米34%,和1〜毫米的探测器像素。象素间的信号的相关结果中的相邻像素的相同的基础材料估计之间正噪声相关性,从而导致至少在检测器的奈奎斯特频率上DQE效应的冲击。在最佳能量有效单能DQE S(O)是相对宽容光谱降解(取决于像素大小85-91%),但在很大程度上取决于所选择的有效能量,具有最大变化(在250?微米像素)的17 %至85%之间为30〜120?keV的有效能量。结论:我们的研究结果表明,时空,充满活力的相关性降低DQE S(F)超出了通过在单个探测器元件差光谱响应丢失。在惩罚DQE S(F)相邻像素计算的结果单个基材料值之间的正相关性是至少在检测器的奈奎斯特频率。所希望的是减少光谱降解和串扰最小化对系统性能的影响。更大的像素尺寸具有更好的空间 - 高能响应由于较低的电荷共享和散射和K-荧光光子的逃逸,并且因此更高的DQE S(O)。在最佳能量有效单能DQE S(O)相比DQE S表示频谱的任务之一是多少受光谱降解和串扰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号