...
首页> 外文期刊>Medical Physics >Minibeam radiation therapy: A micro‐ and nano‐dosimetry Monte Carlo study
【24h】

Minibeam radiation therapy: A micro‐ and nano‐dosimetry Monte Carlo study

机译:MINIBEAM放射治疗:一种微型和纳米剂量蒙特卡罗研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Purpose Minibeam radiation therapy (MBRT) is an innovative strategy based on a distinct dose delivery method that is administered using a series of narrow (submillimetric) parallel beams. To shed light on the biological effects of MBRT irradiation, we explored the micro‐ and nanodosimetric characteristics of three promising MBRT modalities (photon, electron, and proton) using Monte Carlo (MC) calculations. Methods Irradiation with proton (100?MeV), electron (300?MeV), and photon (effective energy of 69?keV) minibeams were simulated using Geant4 MC code and the Geant4‐DNA extension, which allows the simulation of energy transfer points with nanometric accuracy. As the target of the simulations, cells containing spherical nuclei with or without a detailed description of the DNA (deoxyribonucleic acid) geometry were placed at different depths in peak and valley regions in a water phantom. The energy deposition and number of events in the cell nuclei were recorded in the microdosimetry study, and the number of DNA breaks and their complexity were determined in the nanodosimetric study, where a multi‐scale simulation approach was used for the latter. For DNA damage assessment, an adapted DBSCAN clustering algorithm was used. To compare the photon MBRT (xMBRT), electron MBRT (eMBRT), and proton MBRT (pMBRT) approaches, we considered the treatment of a brain tumor located at a depth of 75?mm. Results Both mean energy deposition at micrometric scale and DNA damage in the “valley” cell nuclei were very low as compared with these parameters in the peak region at all depths for xMBRT and at depths of 0 to 30?mm and 0 to 50?mm for eMBRT and pMBRT, respectively. Only the charged minibeams were favorable for tumor control by producing similar effects in peak and valley cells after 70?mm. At the micrometer scale, the energy deposited per event pointed to a potential advantage of proton beams for tumor control, as more aggressive events could be expected at the end of their tracks. At the nanometer scale, all three MBRT modalities produced direct clustered DNA breaks, although the majority of damage (93%) was composed of isolated single strand breaks. The pMBRT led to a significant increase in the proportion of clustered single strand breaks and double‐strand breaks at the end of its range as compared to the entrance (7% at 75?mm vs 3% at 10?mm) in contrast to eMBRT and xMBRT. In the latter cases, the proportions of complex breaks remained constant, irrespective of the depth and region (peak or valley). Conclusions Enhanced normal tissue sparing can be expected with these three MBRT techniques. Among the three modalities, pMBRT offers an additional gain for radioresistant tumors, as it resulted in a higher number of complex DNA damage clusters in the tumor region. These results can aid understanding of the biological mechanisms of MBRT.
机译:目的,Minibeam放射疗法(MBRT)是一种基于不同剂量递送方法的创新策略,所述不同剂量递送方法是使用一系列窄(亚颌下)平行梁的施用。对MBRT照射的生物效应揭示,我们探索微观和使用蒙特卡洛(MC)计算3个有为MBRT模态(光子,电子,和质子)nanodosimetric特性。方法使用GEANT4 MC代码和GEANT4-DNA延伸,用质子(100〜MEV),电子(300〜MEV),电子(300〜MEV),电子(300〜MEV)和光子(有效能量为69〜kev)MINIBEAM,这允许模拟能量传递点的模拟纳米准确度。作为仿真的靶,含有或不具有或不详细描述DNA(脱氧核糖核酸)几何形状的细胞置于水体幻影中的峰值和谷地区的不同深度。在微量吡吡吡啶研究中记录了细胞核中的能量沉积和事件的数量,并且在纳米粒度研究中确定了DNA断裂的数量及其复杂性,其中用于后者的多尺度模拟方法。对于DNA损伤评估,使用了一种适应的DBSCAN聚类算法。为了比较光子MBRT(XMBRT),电子MBRT(IMBRT)和质子MBRT(PMBRT)方法,我们认为脑肿瘤的治疗位于75Ωmm的深度。结果在XMBRT的所有深度下的峰区域中的峰值区域中的微米级和DNA损伤的平均能量沉积在微米级和DNA损伤中的均值非常低,并且在XMBRT的深度和0至30Ωmm和0至50Ωmm的深度对于植物和PMBRT。只有在70毫米后在峰值和谷细胞中产生类似的效果,只有带电的小叶才有利于肿瘤控制。在千分尺刻度下,每个事件沉积的能量指向质子束用于肿瘤控制的潜在优势,因为在其轨道的尽头可以预期更具侵略性的事件。在纳米级,所有三种MBRT型号产生直接聚类的DNA断裂,尽管大部分损伤(& 93%)由孤立的单链断裂组成。所述pMBRT导致簇单链断裂,并且在其范围内的端部的双链断裂的比例显著增加相比,在对比eMBRT入口(在75?毫米与3%在10 7%?毫米)和xmbrt。在后一种情况下,无论深度和区域(峰值或谷)如何,复杂断裂的比例仍然是恒定的。结论这三种MBRT技术可以预期增强的正常组织备用。在三种方式中,PMBRT为肿瘤肿瘤提供额外的增益,因为它导致肿瘤区中较多的复杂DNA损伤簇。这些结果可以帮助了解MBRT的生物机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号