...
首页> 外文期刊>Medical Physics >A new open‐source GPU‐based microscopic Monte Carlo simulation tool for the calculations of DNA damages caused by ionizing radiation — Part II: sensitivity and uncertainty analysis
【24h】

A new open‐source GPU‐based microscopic Monte Carlo simulation tool for the calculations of DNA damages caused by ionizing radiation — Part II: sensitivity and uncertainty analysis

机译:基于新的开源GPU的微观蒙特卡罗仿真工具,用于计算电离辐射引起的DNA损伤 - 第二部分:敏感性和不确定性分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Purpose Calculations of deoxyribonucleic acid (DNA) damages involve many parameters in the computation process. As these parameters are often subject to uncertainties, it is of central importance to comprehensively quantify their impacts on DNA single‐strand break (SSB) and double‐strand break (DSB) yields. This has been a challenging task due to the required large number of simulations and the relatively low computational efficiency using CPU‐based MC packages. In this study, we present comprehensive evaluations on sensitivities and uncertainties of DNA SSB and DSB yields on 12 parameters using our GPU‐based MC tool, gMicroMC. Methods We sampled one electron at a time in a water sphere containing a human lymphocyte nucleus and transport the electrons and generated radicals until 2?Gy dose was accumulated in the nucleus. We computed DNA damages caused by electron energy deposition events in the physical stage and the hydroxyl radicals at the end of the chemical stage. We repeated the computations by varying 12 parameters: (a) physics cross section, (b) cutoff energy for electron transport, (c)–(e) three branching ratios of hydroxyl radicals in the de‐excitation of excited water molecules, (f) temporal length of the chemical stage, (g)–(h) reaction radii for direct and indirect damages, (i) threshold energy defining the threshold damage model to generate a physics damage, (j)–(k) minimum and maximum energy values defining the linear‐probability damage model to generate a physics damage, and (l) probability to generate a damage by a radical. We quantified sensitivity of SSB and DSB yields with respect to these parameters for cases with 1.0 and 4.5?keV electrons. We further estimated uncertainty of SSB and DSB yields caused by uncertainties of these parameters. Results Using a threshold of 10% uncertainty as a criterion, threshold energy in the threshold damage model, maximum energy in the linear‐probability damage model, and probability for a radical to generate a damage were found to cause large uncertainties in both SSB and DSB yields. The scaling factor of the cross section, cutoff energy, physics reaction radius, and minimum energy in the linear‐probability damage model were found to generate large uncertainties in DSB yields. Conclusions We identified parameters that can generate large uncertainties in the calculations of SSB and DSB yields. Our study could serve as a guidance to reduce uncertainties of parameters and hence uncertainties of the simulation results.
机译:脱氧核糖核酸(DNA)损坏的目的计算涉及计算过程中的许多参数。由于这些参数通常受不确定性的影响,因此可以全面地对其对DNA单链断裂(SSB)的影响进行全面定量它们的影响和双链断裂(DSB)产率。由于所需的大量模拟和使用基于CPU的MC包的计算效率相对较低,这是一个具有挑战性的任务。在这项研究中,我们通过GMICROMC的基于GPU的MC工具对12个参数进行了对DNA SSB和DSB的敏感性和不确定性的综合评估。方法在含有人淋巴细胞核的水球中,在含有人淋巴细胞核的水球中进行对一个电子进行采样并产生自由基,直至在细胞核中积聚2〜gy剂量。我们计算了物理阶段电子能量沉积事件和化学阶段末端的羟基自由基引起的DNA损伤。我们通过改变12个参数重复计算:(a)物理横截面,(b)用于电子传输的截止能量,(c) - (e)羟基自由基的三个分支比在激发水分子的去激发中,(f )化学阶段的时间长度,(g) - (h)反应半径用于直接和间接损伤,(i)阈值能量定义阈值损伤模型以产生物理损伤,(j) - (k)最小和最大能量定义线性概率损伤模型的值,以产生物理损坏,(l)通过激进产生损坏的概率。对于具有1.0和4.5的情况,我们对这些参数的敏感性量化了SSB和DSB产生的敏感性。我们进一步估计了由这些参数的不确定性引起的SSB和DSB产量的不确定性。结果使用10%不确定性作为标准的阈值,阈值损伤模型中的阈值能量,线性概率损伤模型中的最大能量,以及产生损坏的激进的概率在SSB和DSB中引起了大的不确定性产量。发现线性概率损伤模型中的横截面,截止能量,物理反应半径和最小能量的缩放因子在DSB产量中产生了大的不确定性。结论我们确定了在SSB和DSB产量计算中产生大不确定性的参数。我们的研究可以作为降低参数不确定性的指导,从而实现模拟结果的不确定性。

著录项

  • 来源
    《Medical Physics》 |2020年第4期|共12页
  • 作者单位

    Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratoryUniversity of;

    Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratoryUniversity of;

    Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratoryUniversity of;

    Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratoryUniversity of;

    Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratoryUniversity of;

    Department of Computer Science &

    Information EngineeringNational Taiwan UniversityTaipei Taiwan;

    Department of PhysicsUniversity of Texas at ArlingtonArlington TX 76019 USA;

    Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratoryUniversity of;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 基础医学;
  • 关键词

    DNA damage calculation; Monte Carlo simulation; sensitivity analysis;

    机译:DNA损伤计算;蒙特卡罗模拟;敏感性分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号