...
首页> 外文期刊>Medical Physics >Determination of electron energy, spectral width, and beam divergence at the exit window for clinical megavoltage x-ray beams.
【24h】

Determination of electron energy, spectral width, and beam divergence at the exit window for clinical megavoltage x-ray beams.

机译:临床型X射线束出口窗口测定电子能量,光谱宽度和光束发散。

获取原文
获取原文并翻译 | 示例
           

摘要

Monte Carlo simulations of x-ray beams typically take parameters of the electron beam in the accelerating waveguide to be free parameters. In this paper, a methodology is proposed and implemented to determine the energy, spectral width, and beam divergence of the electron source. All treatment head components were removed from the beam path, leaving only the exit window. With the x-ray target and flattener out of the beam, uncertainties in physical characteristics and relative position of the target and flattening filter, and in spot size, did not contribute to uncertainty in the energy. Beam current was lowered to reduce recombination effects. The measured dose distributions were compared with Monte Carlo simulation of the electron beam through the treatment head to extract the electron source characteristics. For the nominal 6 and 18 MV x-ray beams, the energies were 6.51 +/- 0.15 and 13.9 +/- 0.2 MeV, respectively, with the uncertainties resulting from uncertainties in the detector position in the measurement and in the stopping power in the simulations. Gaussian spectral distributions were used, with full widths at half maximum ranging from 20 +/- 4% at 6 MV to 13 +/- 4% at 18 MV required to match the fall-off portion of the percent-depth ionization curve. Profiles at the depth of maximum dose from simulations that used the manufacturer-specified exit window geometry and no beam divergence were 2-3 cm narrower than measured profiles. Two simulation configurations yielding the measured profile width were the manufacturer-specified exit window thickness with electron source divergences of 3.3 degrees at 6 MV and 1.8 degrees at 18 MV and an exit window 40% thicker than the manufacturer's specification with no beam divergence. With the x-ray target in place (and no flattener), comparison of measured to simulated profiles sets upper limits on the electron source divergences of 0.2 degrees at 6 MV and 0.1 degrees at 18 MV. A method of determining source characteristics without mechanical modification of thetreatment head, and therefore feasible in clinics, is presented. The energies and spectral widths determined using this method agree with those determined with only the exit window in the beam path.
机译:X射线束的蒙特卡罗模拟通常在加速波导中的电子束的参数采用自由参数。在本文中,提出并实施了一种方法来确定电子源的能量,光谱宽度和光束发散。将所有处理头组件从光束路径中除去,仅留下出口窗口。利用X射线目标和喇叭花在光束中,物理特性和目标和扁平滤波器的相对位置的不确定性,以及在光斑尺寸,在能量中没有有助于不确定性。降低光束电流以减少重组效果。将测量的剂量分布与通过处理头的电子束的蒙特卡罗模拟进行比较以提取电子源特性。对于标称6和18 MV X射线束,能量分别为6.51 +/- 0.15和13.9 +/- 0.2 mev,由于探测器位置的不确定性在测量中的不确定性和停止功率中产生的不确定性模拟。使用高斯光谱分布,在最大宽度为6mV至13 +/- 4%的宽度为18 mV,以匹配百分比深度电离曲线的掉落部分所需的13mV。从使用制造商指定的出口窗口几何形状的模拟中的最大剂量深度的配置文件,并且没有比测量轮廓窄2-3厘米。两个仿真配置产生测量的轮廓宽度是制造商指定的出口窗口厚度,电子源分流为3.3度,在18 mV的6mV和1.8度,出口窗口比制造商的规格厚,没有光束分流。利用X射线靶(且没有倒舱),测量到模拟型材的比较将电子源分路的上限设置在0.2度,在18mV下为0.2度和0.1度。提出了一种确定没有机械改性的源特征的方法,并因此提供了诊所的可行性。使用该方法确定的能量和光谱宽度与仅在光束路径中的出口窗口确定的那些。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号