首页> 外文期刊>Medical Physics >WE‐AB‐207B‐03: A Computational Methodology for Determination of CTV‐To‐PTV Margins with Inter Fractional Shape Variations Based On a Statistical Point Distribution Model for Prostate Cancer Radiation Therapy
【24h】

WE‐AB‐207B‐03: A Computational Methodology for Determination of CTV‐To‐PTV Margins with Inter Fractional Shape Variations Based On a Statistical Point Distribution Model for Prostate Cancer Radiation Therapy

机译:WE-AB-207B-03:基于前列腺癌放射治疗的统计点分布模型,用分数形状变化测定CTV至PTV边缘的计算方法

获取原文
获取原文并翻译 | 示例
       

摘要

Purpose: Our assumption was that interfractional shape variations of target volumes could not be negligible for determination of clinical target volume (CTV)‐to‐planning target volume (PTV) margins. The aim of this study was to investigate this assumption as a simulation study by developing a computational framework of CTV‐to‐PTV margins with taking the interfractional shape variations into account based on point distribution model (PDM) Methods: The systematic and random errors for interfractional shape variations and translations of target volumes were evaluated for four types of CTV regions (only a prostate, a prostate plus proximal 1‐cm seminal vesicles, a prostate plus proximal 2‐cm seminal vesicles, and a prostate plus whole seminal vesicles). The CTV regions were delineated depending on prostate cancer risk groups on planning computed tomography (CT) and cone beam CT (CBCT) images of 73 fractions of 10 patients. The random and systematic errors for shape variations of CTV regions were derived from PDMs of CTV surfaces for all fractions of each patient. Systematic errors of shape variations of CTV regions were derived by comparing PDMs between planning CTV surfaces and average CTV surfaces. Finally, anisotropic CTV‐to‐PTV margins with shape variations in 6 directions (anterior, posterior, superior, inferior, right, and left) were computed by using a van Herk margin formula. Results: Differences between CTV‐to‐PTV margins with and without shape variations ranged from 0.7 to 1.7 mm in anterior direction, 1.0 to 2.8 mm in posterior direction, 0.8 to 2.8 mm in superior direction, 0.6 to 1.6 mm in inferior direction, 1.4 to 4.4 mm in right direction, and 1.3 to 5.2 mm in left direction. Conclusion: More than 1.0 mm additional margins were needed at least in 3 directions to guarantee CTV coverage due to shape variations. Therefore, shape variations should be taken into account for the determination of CTV‐to‐PTV margins.
机译:目的:我们的假设是目标体积的互动形状变化对于测定临床靶体积(CTV) - 计划目标体积(PTV)边距来忽略不计。本研究的目的是通过在基于点分布模型(PDM)方法中,通过开发CTV-to-PTV边缘的计算框架来调查这种假设作为CTV-to-PTV边距的计算框架,以基于点分布模型(PDM)方法:系统和随机误差评估四种类型的CTV区域(仅前列腺,前列腺加上近端1cm精囊泡,前列腺加上全面囊泡的四种CTV区(仅前列腺,前列腺加上近端1-CM囊泡)评估了靶容积的变化和翻译。根据规划计算机断层扫描(CT)和锥梁CT(CBCT)图像为73分数的10名患者的前列腺癌风险群体划分了CTV区域。对于每个患者的所有部分的CTV表面的PDM,衍生CTV区域的形状变化的随机和系统误差。通过比较规划CTV表面和平均CTV表面之间的PDM来导出CTV区域的形状变化的系统误差。最后,通过使用Van Herk Ramgin公式来计算具有6个方向(前部,后部,优异的,较差,右侧和左)的形状变化的各向异性CTV-to-PTV边缘。结果:在前方向上具有0.7至1.7毫米的CTV至PTV边距与后方向的0.7至1.7毫米的差异,在后方向为1.0至2.8毫米,在优越方向0.8至2.8毫米,下方0.6至1.6毫米,1.4朝向4.4毫米,左侧方向1.3至5.2毫米。结论:至少在3个方向上需要超过1.0毫米额外的边距来保证由于形状变化而覆盖的CTV覆盖率。因此,应考虑形状变化以确定CTV-TO-PTV边缘。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号