首页> 外文期刊>Medical Physics >Comparison of planned dose on different CT image sets to four‐dimensional Monte Carlo dose recalculation using the patient's actual breathing trace for lung stereotactic body radiation therapy
【24h】

Comparison of planned dose on different CT image sets to four‐dimensional Monte Carlo dose recalculation using the patient's actual breathing trace for lung stereotactic body radiation therapy

机译:使用患者的实际呼吸痕迹对四维蒙特卡罗剂量重新计算的肺部立体定向体放射治疗的规划剂量对四维蒙特卡洛剂量重新计算的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose The need for four‐dimensional (4D) treatment planning becomes indispensable when it comes to radiation therapy for moving tumors in the thoracic and abdominal regions. The primary purpose of this study is to combine the actual breathing trace during each individual treatment fraction with the Linac's log file information and Monte Carlo 4D dose calculations. We investigated this workflow on multiple computed tomography (CT) datasets in a clinical environment for stereotactic body radiation therapy (SBRT) treatment planning. Methods We have developed a workflow, which allows us to recalculate absorbed dose to a 4DCT dataset using Monte Carlo calculation methods and accumulate all 4D doses in order to compare them to the planned dose using the Linac's log file, a 4DCT dataset, and the patient's actual breathing curve for each individual fraction. For five lung patients, three‐dimensional‐conformal radiation therapy (3D‐CRT) and volumetric modulated arc treatment (VMAT) treatment plans were generated on four different CT image datasets: a native free‐breathing 3DCT, an average intensity projection (AIP) and a maximum intensity projection (MIP) CT both obtained from a 4DCT, and a 3DCT with density overrides based on the 3DCT (DO). The Monte Carlo 4D dose has been calculated on each 4DCT phase using the Linac's log file and the patient's breathing trace as a surrogate for tumor motion and dose was accumulated to the gross tumor volume (GTV) at the 50% breathing phase (end of exhale) using deformable image registration. Results Δ D 98 % and Δ D 2 % between 4D dose and planned dose differed largely for 3DCT‐based planning and also for DO in three patients. Least dose differences between planned and recalculated dose have been found for AIP and MIP treatment planning which both tend to be superior to DO, but the results indicate a dependency on the breathing variability, tumor motion, and size. An interplay effect has not been observed in the small patient cohort. Conclusions We have developed a workflow which, to our best knowledge, is the first incorporation of the patient breathing trace over the course of all individual treatment fractions with the Linac's log file information and 4D Monte Carlo recalculations of the actual treated dose. Due to the small patient cohort, no clear recommendation on which CT can be used for SBRT treatment planning can be given, but the developed workflow, after adaption for clinical use, could be used to enhance a priori 4D Monte Carlo treatment planning in the future and help with the decision on which CT dataset treatment planning should be carried out.
机译:目的在涉及胸腔和腹部地区移动肿瘤的放射治疗时,对四维(4D)治疗计划的需求变得不可或缺。本研究的主要目的是将实际呼吸轨迹与Linac的日志文件信息和蒙特卡罗4D剂量计算结合在每个单独的治疗部分期间。我们在临床环境中调查了多个计算机断层扫描(CT)数据集的工作流程,用于定向体辐射治疗(SBRT)治疗计划。方法我们开发了一种工作流程,它允许我们使用蒙特卡罗计算方法将吸收剂量重新计算到4DCT数据集,并累积所有4D剂量,以便将它们与Linac的日志文件,4DCT数据集和患者的计划剂量进行比较每个单独的分数的实际呼吸曲线。对于五个肺患者,在四个不同CT图像数据集上产生三维 - 保形辐射治疗(3D-CRT)和体积调制弧处理(VMAT)处理计划:天然呼吸的3DCT,平均强度投影(AIP)和从4DCT获得的最大强度投影(MIP)CT,以及基于3DCT(DO)的密度覆盖的3DCT。使用Linac的日志文件和患者的呼吸痕量作为肿瘤运动的替代品的呼吸痕量和剂量在50%呼吸阶段(GTV)累积到50%的呼吸阶段(呼气结束) )使用可变形的图像配准。结果δd98%和δd2%在4d剂量和计划剂量之间差异很大程度上用于3dct的规划,并且在三个患者中也可以进行。已经发现计划和重新计算的剂量之间的至少剂量差异,用于AIP和MIP处理规划,两者往往优于做,但结果表明对呼吸变异性,肿瘤运动和尺寸的依赖性。小患者队列中未观察到相互作用效果。结论我们开发了一种工作流程,以我们的最佳知识是在所有单独治疗部分的过程中首次融入患者呼吸痕量,并使用LinaC的日志文件信息和实际处理剂量的4D蒙特卡罗重新计算。由于小患者队列,可以给出CT可用于SBRT治疗规划的明确建议,但是在临床使用的适应后,开发的工作流程可用于增强未来的先验4D Monte Carlo治疗计划并有助于执行CT数据集治疗计划的决定。

著录项

  • 来源
    《Medical Physics》 |2019年第7期|共10页
  • 作者单位

    Department of Radiation OncologyUniversity Hospital LMU MunichMunich Germany;

    Department of Radiation OncologyUniversity Hospital LMU MunichMunich Germany;

    Department of Radiation OncologyUniversity Hospital LMU MunichMunich Germany;

    Department of Radiation OncologyUniversity Hospital LMU MunichMunich Germany;

    Department of Radiation OncologyUniversity Hospital LMU MunichMunich Germany;

    Department of Radiation OncologyUniversity Hospital LMU MunichMunich Germany;

    Department of Radiation OncologyUniversity Hospital LMU MunichMunich Germany;

    Department of Radiation OncologyUniversity Hospital LMU MunichMunich Germany;

    Department of Radiotherapy and Radiation OncologyParacelsus Medical UniversityLandeskrankenhaus;

    Heidelberg Institute of Radiation Oncology (HIRO)National Center for Radiation Research in Oncology;

    Heidelberg Institute of Radiation Oncology (HIRO)National Center for Radiation Research in Oncology;

    Department of Radiation OncologyUniversity Hospital LMU MunichMunich Germany;

    Department of Experimental Physics ‐ Medical PhysicsLMU MunichMunich Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 基础医学;
  • 关键词

    4D dose calculation; 4D treatment planning; Monte Carlo; respiratory motion;

    机译:4D剂量计算;4D治疗规划;蒙特卡洛;呼吸运动;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号