首页> 外文期刊>Medical Physics >Three‐dimensional frequency‐domain optical anisotropy imaging of biological tissues with near‐infrared light
【24h】

Three‐dimensional frequency‐domain optical anisotropy imaging of biological tissues with near‐infrared light

机译:近红外光生物组织的三维频域光学各向异性成像

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose Near‐infrared optical imaging aims to reconstruct the absorption μ a and scattering μ s coefficients in order to detect tumors at early stage. However, the reconstructions have only been limited to μ a and μ s due to theoretical and computational limitations. The authors propose an efficient method of the reconstruction, in three‐dimensional geometries, of the anisotropy factor g of the Henyey–Greenstein phase function as a new optical imaging biomarker. Methods The light propagation in biological tissues is accurately modeled by the radiative transfer equation (RTE) in the frequency‐domain. The reconstruction algorithm is based on a gradient‐based updating scheme. The adjoint method is used to efficiently compute the gradient of the objective function which represents the discrepancy between simulated and measured boundary data. A parallel implementation is carried out to reduce the computational time. Results We show that by illuminating only one surface of a tissue‐like phantom, the algorithm is able to accurately reconstruct optical values and different shapes (spherical and cylindrical) that characterize small tumor‐like inclusions. Numerical simulations show the robustness of the algorithm to reconstruct the anisotropy factor with different contrast levels, inclusion depths, initial guesses, heterogeneous background, noise levels, and two‐layered medium. The crosstalk problem when reconstructing simultaneously μ s and g has been reported and achieved with a reasonable quality. Conclusions The proposed RTE‐based reconstruction algorithm is robust to spatially retrieve and localize small tumoral inclusions. Heterogeneities in g ‐factor have been accurately reconstructed which makes the new algorithm a candidate of choice to image this factor as new intrinsic contrast biomarker for optical imaging.
机译:目的近红外光学成像的目标以重建一个μ的吸收和散射μ小号系数,以便在早期检测肿瘤。然而,重建只限于μ和μ的原因可能会理论和计算的局限性。作者提出一种有效的方法重建的,在三维几何形状,所述Henyey-Greenstein的相位函数作为一个新的光学成像生物标志物的各向异性因子g的。方法在生物组织中的光的传播被精确地通过在频域的辐射传输方程(RTE)建模。重建算法是基于基于梯度的更新方案。伴随方法用于有效地计算代表模拟和测量边界数据之间的差异的目标函数的梯度。一种并行实现进行,以减少计算时间。结果我们发现,通过照射仅一个的表面上的组织样幻象,该算法能够准确地重建光学值和不同的形状(球形和圆柱形)表征小瘤状夹杂物。数值仿真表明该算法的鲁棒性来重建具有不同对比度水平,夹杂物的深度,初始猜测,异构背景,噪声水平,和双层介质中的各向异性因子。重构同时μ秒和克时串扰问题已经报道并与合理的质量来实现的。结论提出了基于RTE重建算法对空间检索和定位小肿瘤包裹。在非均质性克 - 因子已被准确地重建,这使得新的算法选择的候选图像这一因素作为新的固有对比度的生物标志物用于光学成像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号