...
首页> 外文期刊>Medical Physics >Optimization of a multipoint plastic scintillator dosimeter for high dose rate brachytherapy
【24h】

Optimization of a multipoint plastic scintillator dosimeter for high dose rate brachytherapy

机译:高剂量速率近距离放射治疗多点塑料闪烁剂剂量计的优化

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose This study is devoted to optimizing and characterizing the response of a multipoint plastic scintillator detector (mPSD) for application to in vivo dosimetry in high dose rate (HDR) brachytherapy. Methods An exhaustive analysis was carried out in order to obtain an optimized mPSD design that maximizes the scintillation light collection produced by the interaction of ionizing photons. More than 20 prototypes of mPSD were built and tested in order to determine the appropriate order of scintillators relative to the photodetector (distal, center, or proximal) as well as their length as a function of the scintillation light emitted. The available detecting elements are the BCF-60, BCF-12, and BCF-10 scintillators (Saint Gobain Crystals, Hiram, OH, USA), separated from each other by segments of Eska GH-4001 clear optical fibers (Mitsubishi Rayon Co., Ltd., Tokyo, Japan). The contribution of each scintillator to the total spectrum was determined by irradiations in the low energy range (<120 keV). For the best mPSD design, a numerical optimization was done in order to select the optical components [dichroic mirrors, filters, and photomultipliers tubes (PMTs)] that best match the light emission profile. Calculations were performed taking into account the measured scintillation spectrum and light yield, the manufacturer-reported transmission and attenuation of the optical components, and the experimentally characterized PMT noise. The optimized dosimetric system was used for HDR brachytherapy measurements. The system was independently controlled from the 192Ir source via LabVIEW and read simultaneously using an NI-DAQ board. Dose measurements as a function of distance from the source were carried out according to TG-43U1 recommendations. The system performance was quantified in terms of signal to noise ratio (SNR) and signal to background ratio (SBR). Results For best overall light-yield emission, it was determined that BCF-60 should be placed at the distal position, BCF-12 in the center, and BCF-10 at the proximal position with respect to the photodetector. This configuration allowed for optimized light transmission through the collecting fiber and avoided inter-scintillator excitation and self-absorption effects. The optimal scintillator length found was of 3, 6, and 7 mm for BCF-10, BCF- 12, and BCF-60, respectively. The optimized luminescence system allowed for signal deconvolution using a multispectral approach, extracting the dose to each element while taking into account the Cerenkov stem effect. Differences between the mPSD measurements and TG-43U1 remain below 5% in the range of 0.5 to 6.5 cm from the source. The dosimetric system can properly differentiate the scintillation signal from the background for a wide range of dose rate conditions; the SNR was found to be above 5 for dose rates above 22 mGy/s while the minimum SBR measured was 1.8 at 6 mGy/s. Conclusion Based on the spectral response at different conditions, an mPSD was constructed and optimized for HDR brachytherapy dosimetry. It is sensitive enough to allow multiple simultaneous measurements over a clinically useful distance range, up to 6.5 cm from the source. This study constitutes a baseline for future applications enabling real-time dose measurements and source position reporting over a wide range of dose rate conditions. (c) 2019 American Association of Physicists in Medicine
机译:目的本研究致力于优化和表征多点塑料闪烁体检测器(MPSD)的响应,以便在高剂量率(HDR)近距离放射治疗中的体内剂量仪中的应用。方法进行详尽分析,以获得优化的MPSD设计,以最大化通过电离光子的相互作用产生的闪烁光收集。构建和测试了20多种MPSD原型,以便确定相对于光电探测器(远端,中心或近端)的适当顺序,以及作为发射的闪烁光的函数的长度。可用的检测元件是BCF-60,BCF-12和BCF-10闪烁体(Saint Gobain Cyry,Hiram,OH,USA),通过ESKA GH-4001透明光纤的段彼此分开(Mitsubishi Yioron Co. ,有限公司,东京,日本)。通过低能量范围(<120keV)的照射测定每个闪烁体对总光谱的贡献。对于最佳MPSD设计,完成了数字优化,以选择最佳匹配的光发射轮廓的光学部件[二向色镜,滤波器,滤光器和光电倍增管(PMTS)]。考虑到测量的闪烁谱和光率,制造商报告的光学组件的传输和衰减以及实验表征的PMT噪声来进行计算,以及实验表征的PMT噪声。优化的剂量测定系统用于HDR近距离放射治疗测量。系统通过LabVIEW独立地从192IR源控制,并使用NI-DAQ板同时读取。根据TG-43U1建议进行与源的距离函数的剂量测量。在信号到噪声比(SNR)和信号到背景比率(SBR)时,系统性能被定量。结果最佳总体光屈服发射,确定BCF-60应放置在中心的远端位置,BCF-12,以及在相对于光电探测器的近侧位置处的BCF-10。这种配置允许通过收集纤维进行优化的光传输,避免了速溶型激励和自吸收效果。发现的最佳闪烁体长度为BCF-10,BCF-12和BCF-60分别为3,6和7mm。优化的发光系统允许使用多光谱方法的信号去卷积,在考虑Cerenkov茎效应的同时将剂量提取到每个元素。 MPSD测量和TG-43U1之间的差异距离源0.5至6.5cm的5%以下。剂量测定系统可以正确地将闪烁信号从背景中区分为广泛的剂量率条件;对于22 mgy / s以上的剂量率,SNR被发现在5上以上5,而测量的最低SBR为1.8以上为6毫级/秒。结论基于不同条件下的光谱响应,构建了MPSD,针对HDR近距离放射治疗剂量进行了优化。它足够敏感,以允许在临床有用的距离范围内进行多次同时测量,从源极高达6.5厘米。本研究构成了未来应用的基线,其在广泛的剂量率条件下进行实时剂量测量和源位置报告。 (c)2019年美国物理学家协会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号