...
首页> 外文期刊>Macromolecules >Non-Equilibrium Phase Behavior of Immiscible Polymer-Grafted Nanoparticle Blends
【24h】

Non-Equilibrium Phase Behavior of Immiscible Polymer-Grafted Nanoparticle Blends

机译:不混溶聚合物接枝纳米颗粒共混物的非平衡相行为

获取原文
获取原文并翻译 | 示例
           

摘要

Preferential attraction of polymer chains to the substrate [i.e., poly(methyl methacrylate) (PMMA) on the hydroxyl-terminated Si substrate] typically results in the initial phase separation of spin-cast immiscible linear polymer blends [i.e., polystyrene (PS)/PMMA] with a characteristic interfacial microstructure depending on their molecular weight. A formation of the undesired microstructure in those blends is inevitable because of the thermodynamic force driving their phase separation combined with relatively rapid dynamics in solution. In contrast, the polymer ligands, which are grafted from nanoparticles, are capable of limited segmental interactions in the presence of segmental contacts of chemically distinct chains as well as hindered mobility by interpenetration (or entanglement) and thus exhibit a homogeneous but non-equilibrium phase behavior. Here, the microstructure of the blends consisting of immiscible polymer-grafted nanoparticles (PGNPs) was identified by their neutron reflectivity, in which the scattering length density was controlled by tethering deuterated PS on silica NPs. We demonstrate that the single-phase homogeneous microstructure is attributed to a significantly reduced particle dynamics arising from the cooperative motion (or interpenetration) of polymer ligands during vitrification of PGNP films despite a relatively high degree of segregation N chi(S/MM)(A). Furthermore, the slower segmental interactions of polymer ligands promote the thermal stability of the PGNP blends in the kinetically quenched non-equilibrium state. This suggests a crucial role of polymer ligands to determine the relevant properties relying on their microstructures in a wide range of blending approaches utilizing nanoparticles and polymers.
机译:聚合物链对羟基封端的Si衬底上的基材[即,聚(甲基丙烯酸甲酯)(PMMA)]通常导致旋铸不混溶的线性聚合物共混物的初始相分离[即,聚苯乙烯(PS)/ PMMA]根据其分子量,具有特征界面微观结构。由于热力学力驱动它们的相分离与溶液中相对快速的动态相结合,因此在那些混合物中形成不可避免的微观结构是不可避免的。相反,从纳米颗粒接枝的聚合物配体能够通过间隔(或缠结)在化学显着链和妨碍迁移率的存在下有限的节段相互作用,因此表现出均匀但非平衡阶段行为。这里,通过它们的中子反射率鉴定由不混溶的聚合物接枝纳米颗粒(PGNP)组成的共混物的微观结构,其中通过在硅NPS上束缚氘代PS来控制散射长度密度。我们证明单相均匀微观结构归因于在PGNP薄膜的玻璃化过程中由聚合物配体的协同运动(或互相)产生的显着降低的颗粒动力学,尽管较高的偏析n chi(s / mm)(a )。此外,聚合物配体的较慢的节段相互作用促进了在动力学上淬火的非平衡状态下PGNP共混物的热稳定性。这表明聚合物配体的关键作用是在许多使用纳米颗粒和聚合物的各种混合方法中依赖于其微观结构的相关性能。

著录项

  • 来源
    《Macromolecules》 |2019年第15期|共8页
  • 作者单位

    Chungnam Natl Univ Dept Mat Sci &

    Engn 99 Daehak Ro Daejeon 34134 South Korea;

    Chungnam Natl Univ Dept Mat Sci &

    Engn 99 Daehak Ro Daejeon 34134 South Korea;

    Chungnam Natl Univ Dept Mat Sci &

    Engn 99 Daehak Ro Daejeon 34134 South Korea;

    NIST Ctr Neutron Res Gaithersburg MD 20899 USA;

    NIST Ctr Neutron Res Gaithersburg MD 20899 USA;

    Korea Basic Sci Inst Electron Microscopy Res Ctr 169-148 Gwahak Ro Daejeon 34133 South Korea;

    Chungnam Natl Univ Dept Mat Sci &

    Engn 99 Daehak Ro Daejeon 34134 South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号