首页> 外文期刊>Environmental Science and Pollution Research >Remediation of TCE-contaminated groundwater using KMnO4 oxidation: laboratory and field-scale studies
【24h】

Remediation of TCE-contaminated groundwater using KMnO4 oxidation: laboratory and field-scale studies

机译:使用KMNO4氧化治疗TCE污染的地下水:实验室和现场规模研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The objectives of this study were to (1) conduct laboratory bench and column experiments to determine the oxidation kinetics and optimal operational parameters for trichloroethene (TCE)-contaminated groundwater remediation using potassium permanganate (KMnO4) as oxidant and (2) to conduct a pilot-scale study to assess the efficiency of TCE remediation by KMnO4 oxidation. The controlling factors in laboratory studies included soil oxidant demand (SOD), molar ratios of KMnO4 to TCE, KMnO4 decay rate, and molar ratios of Na2HPO4 to KMnO4 for manganese dioxide (MnO2) production control. Results show that a significant amount of KMnO4 was depleted when it was added in a soil/water system due to the existence of natural soil organic matters. The presence of natural organic material in soils can exert a significant oxidant demand thereby reducing the amount of KMnO4 available for the destruction of TCE as well as the overall oxidation rate of TCE. Supplement of higher concentrations of KMnO4 is required in the soil systems with high SOD values. Higher KMnO4 application resulted in more significant H+ and subsequent pH drop. The addition of Na2HPO4 could minimize the amount of produced MnO2 particles and prevent the clogging of soil pores, and TCE oxidation efficiency would not be affected by Na2HPO4. To obtain a complete TCE removal, the amount of KMnO4 used to oxidize TCE needs to be higher than the theoretical molar ratio of KMnO4 to TCE based on the stoichiometry equation. Relatively lower oxidation rates are obtained with lower initial TCE concentrations. The half-life of TCE decreased with increased KMnO4 concentrations. Results from the pilot-scale study indicate that a significant KMnO4 decay occurs after the injection due to the reaction of KMnO4 with soil organic matters, and thus, the amount of KMnO4, which could be transported from the injection point to the downgradient area, would be low. The effective influence zone of the KMnO4 oxidation was limited to the KMnO4 injection area (within a 3-m radius zone). Migration of KMnO4 to farther downgradient area was limited due to the reaction of KMnO4 to natural organic matters. To retain a higher TCE removal efficiency, continuous supplement of high concentrations of KMnO4 is required. The findings would be useful in designing an in situ field-scale ISCO system for TCE-contaminated groundwater remediation using KMnO4 as the oxidant.
机译:本研究的目标是(1)进行实验室工作台和柱实验,以确定使用高锰酸钾(KMnO 4)作为氧化剂和(2)进行氧化丙烯乙烯(TCE) - 丙烯乙烯(TCE)的氧化动力学和最佳操作参数。(2)进行飞行员 - 评估KMnO4氧化的TCE修复效率的研究。实验室研究中的控制因子包括土壤氧化剂需求(SOD),KMnO4至TCE,KMnO4衰减率和NA2HPO4至KMnO4的摩尔比,用于二氧化锰(MNO2)的生产对照。结果表明,由于天然土壤有机物质的存在,在土壤/水系统中加入了大量kmno4。土壤中的天然有机材料的存在可以发挥显着的氧化需求,从而减少可用于破坏TCE的KMnO4的量以及TCE的总氧化率。在具有高SOD值的土壤系统中需要补充浓度KMNO4的补充。较高的KMNO4申请导致更重要的H +和随后的pH下降。添加Na 2HPO4可以最小化产生的MnO 2颗粒的量,并防止土壤孔隙的堵塞,并且TCE氧化效率不会受到Na2HPO4的影响。为了获得完整的TCE,用于氧化TCE的KMNO4的量需要高于基于化学计量方程的KMnO4至TCE的理论摩尔比。通过较低的初始TCE浓度获得相对较低的氧化速率。 TCE的半衰期随着KMnO4浓度的增加而降低。试验规模研究的结果表明,由于KMNO4与土壤有机物质的反应,在注射之后发生显着的KMNO4衰变,因此,可以从注射点运输到降级区域的KMnO4的量以下。 KMnO4氧化的有效影响区仅限于KMnO4注射区域(在3米半径区内)。由于KMnO4对天然有机物的反应,KMNO4迁移到更远降级区域的限制。为了保留更高的TCE去除效率,需要连续补充高浓度KMNO4。该发现对于使用KMNO4作为氧化剂设计用于TCE污染的地下水修复的原位现场级ISCO系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号