首页> 外文期刊>Electrochimica Acta >Facile preparation of four SnOx-C hybrids with superior electrochemical performance for lithium-ion batteries
【24h】

Facile preparation of four SnOx-C hybrids with superior electrochemical performance for lithium-ion batteries

机译:适用于锂离子电池卓越电化学性能的四种SNOX-C杂交机的舒适性

获取原文
获取原文并翻译 | 示例
       

摘要

SnOx is considered as a promising anode candidate for lithium-ion batteries, but suffers from the low electrical conductivity and severe volume expansion during cycling. To solve these issues, we develop a simple and facile process of incipient wetness impregnation followed by pyrolysis gel molecules to prepare SnOx/mesoporous carbon nanofiber arrays, SnOx/graphene, SnOx/carbon nanotubes and SnOx/three-dimensionally ordered macroporous carbon materials. Notably, SnOx nanoparticles about 5 nm are prepared by a nonaqueous sol-gel method. We also explore the effect of different morphologies and pore structures of four carbon substrates on the electrochemical performance of the composites. Benefiting from the small size of SnOx nanoparticles and the synergistic effect between SnOx and the different carbon matrix materials, SnOx-Carbon electrode materials display excellent rate capability and cycle stability. SnOx/mesoporous carbon nanofiber arrays exhibits the best rate (522 mA h g(-1) at 2000 mA g(-1)) and cycling performances (1327 mA h g(-1) after 200 cycles at 100 mAg(-1)). The superior electrochemical performance, facile synthesized method and low cost of the Sn-based materials exhibit promising application for SnOx/mesoporous carbon nanofiber arrays as anode materials for next-generation lithium-ion batteries. Furthermore, the ex situ X-ray photoelectron spectroscopy studies on this electrode material under different states suggest that the Sn and Li2O could reversibly react to form SnOx during the charging process. (C) 2018 Elsevier Ltd. All rights reserved.
机译:SNOX被认为是锂离子电池的有前途的阳极候选者,但在循环期间患有低电导率和严重的体积膨胀。为了解决这些问题,我们开发了一种简单且初生湿润浸渍过程,然后进行热解凝胶分子,制备SNOX /介孔碳纳米纤维阵列,SNOX /石墨烯,SNOX /碳纳米管和SNOX /三维有序的大孔碳材料。值得注意的是,通过非水溶性溶胶方法制备约5nm的SNOX纳米颗粒。我们还探讨了四种碳基材的不同形态和孔隙结构对复合材料的电化学性能的影响。受益于SNOX纳米粒子的小尺寸和SNOX和不同碳基质材料之间的协同效应,SNOX-碳电极材料显示出优异的速率能力和循环稳定性。 SNOX /中孔碳纳米纤维阵列在2000 mA G(-1))和2000mA的最佳速率(522mA H(-1))和100mAG(-1)的200次循环后的循环性能(1327mA H(-1))。卓越的电化学性能,容易合成的方法和Sn基材料的低成本表现出对斯诺克/介孔碳纳米河阵列的有望应用作为下一代锂离子电池的阳极材料。此外,在不同状态下对该电极材料的EX原位X射线光电子能谱表明SN和Li2O可以在充电过程中可逆地反应形成SNOX。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号