首页> 外文期刊>Electrochimica Acta >Mitigation strategy towards stabilizing the Electrochemical Interface under high CO and H2O containing reformate gas feed
【24h】

Mitigation strategy towards stabilizing the Electrochemical Interface under high CO and H2O containing reformate gas feed

机译:高效稳定电化学界面稳定电化学界面的缓解策略

获取原文
获取原文并翻译 | 示例
       

摘要

Despite the enhanced CO tolerance of the high temperature polymer electrolyte membrane (HT PEMFC) technology, the synergistic effect of CO and steam in the anodic reformate gas feed was proven to result in serious performance reduction and operation instabilities, due to the dynamic disturbance of the electrochemical interface (El). In this work a mitigation strategy is presented by controlling the hydrophilicity of the catalytic layer in order to achieve the optimum structure of the El. The thin and continuous film distribution of the phosphoric acid (PA) inside the catalytic layer (CL) without blocking the pores is the main characteristic property that determines the good quality of the El. As shown, a hydrophilic catalytic layer is preferable, since the acid, being at any hydration level, will be able to spread over the catalytic surface aiming to the formation of a thin and continuous film so as to maximize the extend of the El without blocking the pores of the catalytic layer. This facilitates the uninterrupted transport of protons and the fast diffusion of the reacting gases. Herein, this was accomplished by modifying the surface properties of the CL through the anchoring of pyridine moieties on the MWCNTs, which plays the role of the Pt catalyst support. The basic pyridine moieties enhance the hydrophilicity of the nanotubes through the acid (PA)-base (pyridine) interaction so that the contact angle between a PA drop and the catalytic layer is very close to zero. The good affinity of the PA with the pyridine based catalytic layer secures the PA thin film distribution and continuity. More importantly it is not affected even at high hydration levels of the PA, when the partial pressure of steam is increased at values >20 kPa. Otherwise, on conventional C supports, hydrated PA has the tendency to shrink and create ganglia leading to the disruption of the El. The pyridine modified catalytic layers approach Pt surface utilization values as high as 80% as compared to 50% utilization measured for the case of conventional Pt/C catalytic layers. (C) 2017 Elsevier Ltd. All rights reserved.
机译:尽管具有高温聚合物电解质膜(HT PEMFC)技术的CO耐受性,但由于动态干扰,证明了阳极重整液进料中的CO和蒸汽的协同作用,导致严重的性能和操作不稳定电化学界面(EL)。在这项工作中,通过控制催化层的亲水来提出减缓策略,以实现EL的最佳结构。催化层(CL)内的磷酸(PA)的薄和连续膜分布而不阻挡孔隙是确定EL的良好质量的主要特征性。如图所示,亲水性催化层是优选的,因为酸在任何水合水平,将能够散布在催化表面上,旨在形成薄和连续膜,以便最大化EL的延伸而不阻挡催化层的孔。这有助于不间断地运输质子和反应气体的快速扩散。在此,这是通过通过在MWCNT上通过吡啶部分的锚固修饰Cl的表面性质来实现的,这起到了Pt催化剂载体的作用。碱性吡啶部分通过酸(PA) - 基(吡啶)相互作用增强了纳米管的亲水性,从而PA下降和催化层之间的接触角非常接近零。 PA与吡啶基催化层的良好亲和力确保了PA薄膜分布和连续性。更重要的是,即使在PA的高水合水平下,当蒸汽的分压在值> 20kPa时,它也不会影响。否则,在常规的C载体上,水合PA具有缩小并产生通向埃尔的破坏的趋势。与常规PT / C催化层的情况测量的50%相比,吡啶改性催化层接近Pt表面利用率高达80%。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号