...
首页> 外文期刊>Electrochimica Acta >Synthesis and characterization of novel p-type chemically cross-linked ionogels with high ionic seebeck coefficient for low-grade heat harvesting
【24h】

Synthesis and characterization of novel p-type chemically cross-linked ionogels with high ionic seebeck coefficient for low-grade heat harvesting

机译:具有高离子探测系数的新型P型化学交联离子凝胶的合成与表征,低级热收割系数

获取原文
获取原文并翻译 | 示例
           

摘要

The low value of the Seebeck coefficient of the order of few mu V/K in inorganic conductors, semiconductors and conducting polymers has inspired the researchers to explore alternative thermoelectric materials. In this work, a novel class of ionogels (IGs) has been synthesized with the aim of developing high-performance thermoelectric materials. Chemically cross-linked ionogels were prepared by the immobilization of ionic liquid, 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF4) in polyethylene glycol dimethacrylate (PEGDMA) matrix using azobisisobutyronitrile (AIBN) as the free radical initiator. The concentration of BMIMBF4 in IGs was varied from 60 to 90 wt (wt. %). The impact of variation of ionic liquid content on the thermoelectric properties of ionogels was analyzed by measuring their thermoelectric properties. Thermal stability, glass transition temperature (T-g), Surface morphology, microstructure, the crystallinity of IGs and nature of chemical interaction between the ionic liquid and polymer matrix were observed by performing TGA, DSC, FESEM, FETEM, XRD, and FTIR respectively. The ionic conductivities of neat BMIMBF4 and IGs were determined by electrochemical spectroscopy using SI 1260 Impedance/Gain-Phase Analyzer. It is worth noting that ionic conductivity (49.41 mS/cm) of IG with 90 wt % of BMIMBF4 is 10 times higher than the ionic conductivity of neat BMIMBF4 (4.5 mS/cm). The origin of this promising achievement (very high conductivity) lies in the "breathing polymer chain model". The breathing in and out of polymer chains dissociates the ion aggregates resulting in a significant increase in ionic conductivity of IGs. A remarkably higher value of the Seebeck coefficient (2.35 mV/K) was achieved for IG with 60 wt % of BMIMBF4 and defined as ionic Seebeck coefficient because of its origin from the diffusion of ions of the ionic liquid. Due to the positive value of ionic Seebeck coefficient (in an analogy to positive Seebeck coefficient of p-type semiconductors) we termed the ionogels as p-type chemically crosslinked ionogels. A decrease in glass transition temperature of IGs with an increase in ionic liquid content was observed from DSC curves corresponding to an increase in mobility of cations and anions. TGA analysis showed that the synthesized IGs were highly thermally stable up to 390 degrees C. FESEM and FETEM images revealed that ionic liquid is well confined in the PEGDMA scaffold. The results indicate that ionogels may serve as promising candidates for future thermoelectric applications and also opens the perspective of engineering ionogels with high Seebeck coefficients and electrical conductivities. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在无机导体,半导体和导电聚合物中,几MU V / K的塞贝克系数的低值已经启发了研究人员探索替代的热电材料。在这项工作中,通过开发高性能热电材料的目的合成了一种新颖的离子电磁素(IGS)。通过将聚乙二醇二甲基丙烯酸酯(PEGDMA)基质中的离子液体,1-丁基-3-甲基咪唑鎓四氟硼酸盐(BMIMBF4)固定为基质交联的离子凝胶,使用偶氮二异丁腈(AIBN)作为自由基引发剂。 IgS中BmimBF4的浓度从60-90重量(重量%)不同。通过测量其热电性能,分析了离子液体含量变化对离子凝胶热电性能的影响。通过进行分别进行TGA,DSC,FESEM,FEEM,XRD和FTIR,观察到热稳定性,玻璃化转变温度(T-G),表面形态,微观结构,IGS与聚合物基质之间的化学相互作用的结晶度和性质。通过使用Si 1260阻抗/增益相分析仪通过电化学光谱法测定整齐BMIMBF4和Ig的离子导电性。值得注意的是,具有90wt%BMIMBF4的Ig的离子电导率(49.41ms / cm)比整齐BMIMBF4(4.5ms / cm)的离子电导率高10倍。这一有前途成就(非常高的导电性)的起源位于“呼吸聚合物链模型”中。聚合物链中的呼吸分离离子聚集体,导致Igs的​​离子电导率显着增加。对于具有60wt%的BMIMBF4的Ig,实现了塞贝克系数(2.35mV / k)的显着较高值,并且由于其来源于离子液体的离子的扩散而定义为离子塞贝克系数。由于离子探伤系数的正值(在类似于p型半导体的正面拍摄系数中),我们将离子凝胶称为p型化学交联的离子凝胶。从对应于阳离子和阴离子的迁移率的增加,观察到Igs的玻璃化转变温度随离子液体含量增加的降低。 TGA分析表明,合成的Igs高达390℃的高度热稳定性。FeSEM和胎儿图像显示离子液体在PEGDMA支架中局限于狭窄。结果表明,IONOGELS可以作为未来热电应用的承诺候选者,并且还开启了具有高塞贝克系数和电导率的工程离子电磁的视角。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号