首页> 外文期刊>Electrochimica Acta >High charge acceptance through interface reaction on carbon coated negative electrode for advanced lead-carbon battery system
【24h】

High charge acceptance through interface reaction on carbon coated negative electrode for advanced lead-carbon battery system

机译:通过碳涂覆负电极对先进的铅碳电池系统的界面反应的高电荷验收

获取原文
获取原文并翻译 | 示例
           

摘要

In this research, the interfacial effect between the carbon layer and the negative electrode surface is evaluated as a hybrid electrode with higher charge acceptance for the advanced lead-carbon battery (ALC-battery) system. The P-60 (activated carbon) material, with high specific surface area (1787 m(2) g(-1)) and higher electrical conductivity (98.85 S cm(-1)), is considered an efficient activated carbon in the present investigations and deposited on the negative electrode. Compared to the conventional lead-acid battery system, the carbon coated negative electrode of ALC-battery system exhibited higher capacity at the applied higher charge/discharge current. The efficient performance of the ALC-battery is mainly influenced by the thin layer of carbon on the active electrode surface, which induces higher charge acceptance. Furthermore, the ALC-battery showed an outstanding lifespan performance compared to the conventional lead-acid battery system in long-term operations. The resulting cycle life stability of leadacid battery and ALC-battery is 2230 and 6780 cycles, respectively. The significant performance of the ALC-battery is mainly attributed by synergistic mechanism in hybrid electrode, which is resulted from interfacial effect. The likely synergetic reactions arises by carbon layer is (i) higher charge acceptance, (ii) controlled the formation of PbSO4 crystallite in the electrode surfaces, (iii) improved electrochemical performances and Pb redox reaction due to higher electrical conductivity properties. Thus, it can be concluded that the carbon layer deposited on the negative electrode in the ALC-battery is an efficient approach for energy storage, with increased power, capacity, and enhanced cycle life stability. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在该研究中,碳层和负电极表面之间的界面效应被评价为混合电极,对先进的铅碳电池(ALC电池)系统具有更高的电荷接受。的P-60(活性炭)材料,具有高的比表面积(1787米(2)克(-1))和更高的导电性(98.85厘米小号(-1)),被认为是在本高效的活性炭调查并沉积在负电极上。与传统的铅酸电池系统相比,ALC电池系统的碳涂覆负极在施加的更高充电/放电电流下表现出更高的容量。 ALC电池的有效性能主要受到有源电极表面上的薄层的薄层的影响,这诱导更高的电荷接受。此外,与长期操作中的传统铅酸电池系统相比,ALC电池显示出优异的寿命性能。引用电池和ALC电池的所得循环寿命稳定性分别为2230和6780次循环。 ALC电池的显着性能主要由杂化电极中的协同机制归因于界面效应导致的。碳层产生的可能的协同反应是(i)更高的电荷接受,(ii)控制在电极表面中的PBO4微晶的形成,(iii)由于较高的电导率性能而改善电化学性能和PB氧化还原反应。因此,可以得出结论,沉积在ALC电池中的负电极上的碳层是能量存储的有效方法,具有增加的功率,容量和增强的循环寿​​命稳定性。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号