...
首页> 外文期刊>Electrochimica Acta >Three-dimensional skeleton networks of reduced graphene oxide nanosheets/vanadium pentoxide nanobelts hybrid for high-performance supercapacitors
【24h】

Three-dimensional skeleton networks of reduced graphene oxide nanosheets/vanadium pentoxide nanobelts hybrid for high-performance supercapacitors

机译:石墨烯氧化物纳米片/钒五氧化钒纳米核杂交种的三维骨架网络用于高性能超级电容器

获取原文
获取原文并翻译 | 示例

摘要

Supercapacitors based on two-dimensional (2D) ultrathin nanomaterials of reduced graphene oxide (rGO) and vanadium pentoxide (V2O5) are rapidly growing, but constructing three-dimensional (3D) skeleton networks structure with both high energy density and superior cycle stability remains challenging. In this work, supercapacitor based on 3D skeleton networks of rGO nanosheets/V2O5 nanobelts hybrids has been successfully constructed via a simple one-pot hydrothermal method. The resultant rGO/ V2O5 hybrid aerogel electrodes show a high specific capacitance of 310.1 F g(-1) (1 A g(-1)) and 195.2 F g(-1) (10 A g(-1)). Moreover, the assembled symmetric supercapacitors based on as-fabricated hybrid electrodes deliver a high gravimetric capacitance of 225.6 F g(-1) (0.5 A g(-1)), a high energy density of 31.3Wh kg(-1) (249.7 Wkg(-1)) and excellent long-term cycle stability (remain 90.2% after 5000 cycles). Above all, the as-designed 3D skeleton networks, with rGO nanosheets and V2O5 nanobelts hybrids intimately stacked, can give a guidance for designing other high-performance graphene-based electrodes and hold a great potential for high-performance electrical energy storages. (C) 2018 Elsevier Ltd. All rights reserved.
机译:基于二维(2D)超级石墨烯氧化物(RGO)和五氧化钒(V2O5)的超级电容器迅速生长,但构建三维(3D)骨架网络结构,具有高能量密度和高级循环稳定性仍然具有挑战性。在这项工作中,通过简单的单壶水热法成功地构建了基于Rgo Nanoshss / V2O5纳米嵌段杂种的3D骨架网络的超级电容器。得到的RGO / V2O5混合气凝胶电极显示出310.1fg(-1)的高比电容(1 a g(-1))和195.2 f g(-1)(10 a g(-1))。此外,基于以制造的混合电极组装的对称超级电容器提供了225.6f g(-1)的高重量电容(0.5Ag(-1)),高能量密度为31.3wh kg(-1)(249.7 WKG(-1))和优异的长期循环稳定性(5000次循环后保持90.2%)。最重要的是,用Rgo Nanoshss和v2O5纳米纤维交流的设计3D骨架网络可以为设计其他高性能石墨烯的电极进行指导,并保持高性能电能存储的巨大潜力。 (c)2018年elestvier有限公司保留所有权利。

著录项

  • 来源
    《Electrochimica Acta 》 |2019年第2019期| 共8页
  • 作者单位

    Shanghai Jiao Tong Univ Sch Elect Informat &

    Elect Engn Minist Educ Key Lab Thin Film &

    Microfabricat Technol Dong Chuan Rd 800 Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Elect Informat &

    Elect Engn Minist Educ Key Lab Thin Film &

    Microfabricat Technol Dong Chuan Rd 800 Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Elect Informat &

    Elect Engn Minist Educ Key Lab Thin Film &

    Microfabricat Technol Dong Chuan Rd 800 Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Elect Informat &

    Elect Engn Minist Educ Key Lab Thin Film &

    Microfabricat Technol Dong Chuan Rd 800 Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Elect Informat &

    Elect Engn Minist Educ Key Lab Thin Film &

    Microfabricat Technol Dong Chuan Rd 800 Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Sch Elect Informat &

    Elect Engn Minist Educ Key Lab Thin Film &

    Microfabricat Technol Dong Chuan Rd 800 Shanghai 200240 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 电化学工业 ; 物理化学(理论化学)、化学物理学 ;
  • 关键词

    Graphene nanosheets; Vanadium pentoxide nanobelts; Hydrothermal supercapacitors;

    机译:Graphene NanosheS;钒五氧化钒纳米核;水热超级电容器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号