首页> 外文期刊>Electrochimica Acta >Wool roving textured reduced graphene oxide-HoVO4-ZnO nanocomposite for photocatalytic and supercapacitor performance
【24h】

Wool roving textured reduced graphene oxide-HoVO4-ZnO nanocomposite for photocatalytic and supercapacitor performance

机译:羊毛粗纱织地不细石墨烯氧化物-Hovo4-ZnO纳米复合物用于光催化和超级电容器性能

获取原文
获取原文并翻译 | 示例
       

摘要

Reduced graphene oxide-HoVO4-ZnO nanocomposite was prepared via simple hydrothermal method and characterized by X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Energy-Dispersive Spectroscopy (EDX), High-Resolution Transmission Electron Microscopy (HR-TEM), X-Ray Photoelectron Spectroscopy (XPS), FT-Raman, UV-Visible Diffuse Reflectance Spectroscopy (DRS), Electrochemical impedance spectroscopy and Cyclic Voltammogram(CV). The XRD pattern confirmed the formation of hexagonal wurtzite structure of ZnO and monoclinic scheelite structure of HoVO4. FE-SEM images depicted the Wool roving textured reduced Graphene Oxide-HoVO4-ZnO catalyst. As prepared rGO-HoVO4-ZnO exhibits highest photodegradation efficiency achieving at 97.2% and 98% for ibuprofen (IBF) and ciprofloxacin (CIP) respectively in 60 min under UV light illumination. Superoxide radicals (O-2(center dot-)) play an important role in the decomposition of IBF and CIP. Prepared catalysts were found to be stable and reusable even after six consecutive cycles without loss of catalyst. Also Besides, the electrochemical efficiency and galvanostatic charge-discharge of the rGO-HoVO4-ZnO and HoVO4-ZnO composites electrode materials were evaluated by cyclic voltammetry. rGO-HoVO4-ZnO composite showed higher specific capacitance of 322 Fg(-1), compared to HoVO4-ZnO (252 Fg(-1)) in neutral aqueous electrolyte. The enhancement of specific capacitance of the composite electrode is mainly due to the interconnected conductive network as well as synergism of rGO. The experimental results reveal that rGO-HoVO4-ZnO material is an efficient electrode material for high-performance supercapacitors. (C) 2019 Elsevier Ltd. All rights reserved.
机译:通过简单的水热法制备了石墨烯氧化物-HoVO4-ZnO纳米复合材料,并通过X射线粉末衍射(XRD),现场发射扫描电子显微镜(Fe-SEM),能量分散光谱(EDX),高分辨率传输电子显微镜(HR-TEM),X射线光电子能谱(XPS),FT-拉曼,UV可见漫射反射光谱(DRS),电化学阻抗光谱和循环伏安图(CV)。 XRD模式证实了Hovo4的ZnO和单斜晶岩结构的六方紫立岩结构的形成。 Fe-SEM图像描绘了羊毛粗纱织地不应的石墨烯氧化物-Hovo4-ZnO催化剂。由于制备的Rgo-Hovo4-ZnO在紫外光照射下分别在60分钟内分别在60分钟内以97.2%和98%实现的最高光降解效率为97.2%和98%。超氧化物自由基(O-2(中心DOT-))在IBF和CIP的分解中起重要作用。发现制备的催化剂即使在没有催化剂的六个连续循环之后也可稳定可重复使用。此外,通过循环伏安法评价rgo-hovo4-ZnO和Hovo4-ZnO复合材料电极材料的电化学效率和电镀电荷 - 放电。与中性水电解质中的Hovo4-ZnO(252 FG(-1))相比,Rgo-Hovo4-ZnO复合材料显示出较高的322 FG(-1)的电容。复合电极的特定电容的增强主要是由于互联的导电网络以及RGO的协同作用。实验结果表明,Rgo-Hovo4-ZnO材料是高性能超级电容器的有效电极材料。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号