...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases
【24h】

Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases

机译:利用惰性气体追踪落山油田的套管气体中的增强的油回收签名

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however, the environmental effects of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and the disposal of large volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California, and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR. (C) 2018 Elsevier B.V. All rights reserved.
机译:增强的采油(EOR)和液压压裂实践是常用的方法来提高烃萃取效率;然而,这种做法的环境影响仍然明白很差。在加利福尼亚州的石油领域特别普遍,水资源处于高需求,大量生产的水处理可能影响地下水质量。因此,必须更好地了解加利福尼亚州注射(EOR)流体的命运,以及其他地下石油系统以及对附近含水层系统的任何潜在影响。惰性气体可以用作探测器,以了解碳氢化合物产生,迁移和储存条件,以及地下存在的油和水的相对比例。另外,可以容易地识别注射(EOR)流体的惰性气体特征诊断。我们向山地野外油田,加利福尼亚州西北部的石油生产井中报告套管气体的贵气体同位素和集中数据,并从露营地区的FringSvale油田注入水果油田。壳体和注射气体数据用于:1)建立原始烃贵巴气体签名和控制贵瓦气体分布的过程,2)表征注射液的惰性气体特征,3)痕量的地下注射液,4)构建体估算EOR效率的模型。高尚的气体结果范围从丙氨酸到EOR显着改性,并且可以使用油和生成/形成流体之间的溶解性交换模型最佳地解释,然后在生产时进行气体膨胀。该模型对储层条件下的碳氢化合物驱逐,迁移和储存期间的油水相互作用敏感,以及EOR的任何后续修饰。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号