【24h】

Origin of the non-carbonaceous-carbonaceous meteorite dichotomy

机译:非碳质 - 碳质陨石二分法的起源

获取原文
获取原文并翻译 | 示例
           

摘要

The isotopic composition of meteorites reveals a fundamental dichotomy between non-carbonaceous (NC) and carbonaceous (CC) meteorites. However, the origin of this dichotomy-whether it results from processes within the solar protoplanetary disk or is an inherited heterogeneity from the solar system's parental molecular cloud-is not known. To evaluate the origin of the NC-CC dichotomy, we report Ni isotopic data for a comprehensive set of iron meteorites, with a special focus on groups that have not been analyzed before and belong to the CC group. The new Ni isotopic data demonstrate that the NC-CC dichotomy extends to Ni isotopes, and that CC meteorites are characterized by a ubiquitous Ni-58 excess over NC meteorites. These data combined with prior observations reveal that, in general, the CC reservoir is characterized by an excess in nuclides produced in neutron-rich stellar environments, such as Ti-50, Cr-54, Ni-58, and r-process Mo isotopes. Because the NC-CC dichotomy exists for refractory (Ti, Mo) and non-refractory (Ni, Cr) elements, and is only evident for nuclides produced in specific, neutron-rich stellar environments, it neither reflects thermal processing of presolar carriers in the disk, nor the heterogeneous distribution of isotopically anomalous Ca-Al-rich inclusions (CAI). Instead, the NC-CC dichotomy reflects the distinct isotopic composition of later infalling material from the solar system's parental molecular cloud, which affected the inner and outer regions of the disk differently. Simple models of the infall process by themselves can support either infall of increasingly NC-like material onto an initially CC-like disk, or infall of increasingly CC-like material in the absence of disk evolution by spreading. However, provided that CAIs formed close to the Sun, followed by rapid outward transport, their isotopic composition likely reflects that of the earliest infalling material, implying that the composition of the inner disk (i.e., the NC reserv
机译:陨石的同位素组成揭示了非碳质(NC)和碳质(CC)陨石之间的基本二分法。然而,这种二分法的起源 - 无论是太阳能原子环磁盘内的过程还是来自太阳系的父母分子云的继承的异质性 - 还不知道。为了评估NC-CC二分法的起源,我们向一整套铁陨石报告NI同位素数据,特别关注之前未分析的群体并属于CC组。新的Ni同位素数据表明NC-CC二分术延伸至Ni同位素,并且CC陨石的特征在于NC陨石上过量的普发型Ni-58过量。这些数据与现有观察结果表明,通常,CC储存器的特征在于在中子般的恒星环境中产生的核素中过量,例如Ti-50,Cr-54,Ni-58和R-Process Mo同位素。因为NC-CC二分法存在于难治性(Ti,Mo)和非耐火(Ni,Cr)元件中,并且对于在特定的中子的恒星环境中产生的核素仅是核苷酸的明显,它既不反映预原载体的热处理盘,也不是同位素异常Ca-Al的异质分布(CAI)。相反,NC-CC二分法反映了来自太阳系的父母分子云的后来缺管材料的不同同位素组成,这影响了盘的内部和外部区域。本身的简单模型本身可以通过展开,在最初的CC样盘上,或者在磁盘进化的情况下,在最初的CC样盘上或越来越多的CC样材料中的较高的CC样材料。但是,如果CAIS形成靠近太阳,然后快速向外运输,它们的同位素组合物可能反映了最早的缺管材料,这意味着内盘的组成(即,NC储备

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号