...
【24h】

The participation of ilmenite-bearing cumulates in lunar mantle overturn

机译:Ilmenite-udits累积在月球地幔上的参与

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The ilmenite-bearing cumulates (IBC) formed from the solidification of the lunar magma ocean are thought to have significantly affected the long-term evolution of the lunar interior and surface. Their high density is considered to trigger Rayleigh-Taylor instabilities which allow them to sink into the solidified cumulates below and drive a large-scale overturn in the lunar mantle. Knowledge of how the IBC participate in the overturn is important for studying the early lunar dynamo, chemistry of surface volcanism, and the existence of present-day partial melt at the lunar core-mantle boundary. Despite early efforts to study this process as Rayleigh-Taylor instabilities, no dynamical models have quantified the degree of IBC sinking systematically. We have performed quantitative 2-D geodynamical simulations to measure the extent to which IBC participate in the overturn after their solidification, and tested the effect of a range of physical and chemical parameters. Our results show that IBC overturn most likely happened when the magma ocean had not yet fully solidified, with the residual melt decoupling the crust and IBC, resulting in 50-70% IBC sinking. Participation of the last dregs of remaining magma ocean melt is unlikely, leaving its high concentrations of radiogenic elements close to the surface. Our simulations further indicate that foundered IBC can stay relatively stable at the core-mantle boundary until the present day, at temperatures consistent with the presence of a partially molten zone in the deep mantle as inferred from geophysical data. 30-50% of the primary IBC remain at shallow depths throughout lunar history, enabling their assimilation by rising magma to form high-Ti basalts. (C) 2019 The Authors. Published by Elsevier B.V.
机译:由农历岩浆海洋的凝固形成的髂岩累积(IBC)被认为显着影响了月球内部和表面的长期演变。它们的高密度被认为是触发瑞利 - 泰勒不稳定性,使它们沉入下面的固化累积,并在月球地幔中驾驶大规模的翻转。知识知识IBC如何参与翻倒,对于研究早期的月球发电机,表面火山中的化学,以及在月球核心地幔边界的现今部分熔体存在的重要性。尽管早期努力研究这一过程作为Rayleigh-Taylor Instability,但没有动态模型已经量化了IBC系统地下沉的程度。我们已经进行了定量的2-D地球力学模拟,以测量IBC在其凝固后参与翻转的程度,并测试了一系列物理和化学参数的效果。我们的研究结果表明,当岩浆海洋尚未完全凝固时,IBC最有可能发生在地壳和IBC的残留熔体中,导致50-70%的IBC下沉。剩余岩浆海洋熔体的最后一个渣滓的参与不太可能,留下其靠近表面的高浓度的辐射元素。我们的仿真进一步表明,由于从地球物理数据推断,在当前的温度下,在核心地幔边界处可以保持相对稳定的核心型界面的核心界面。 30-50%的主要IBC在农历历史上留在浅层深度,通过上升岩浆来形成高TI玄武岩。 (c)2019年作者。由elsevier b.v出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号