首页> 外文期刊>Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics >[2+2]-type Reaction of Metal-Metal sigma-Bond with Fullerene Forming an eta(1)-C-60 Metal Complex: Mechanistic Details of Formation Reaction and Prediction of a New eta(1)-C-60 Metal Complex
【24h】

[2+2]-type Reaction of Metal-Metal sigma-Bond with Fullerene Forming an eta(1)-C-60 Metal Complex: Mechanistic Details of Formation Reaction and Prediction of a New eta(1)-C-60 Metal Complex

机译:[2 + 2] - 金属 - 金属σ与富勒烯的反应与富勒烯形成ETA(1)-C-60金属复合物:形成反应的机械细节和新的ETA(1)-C-60金属络合物的预测

获取原文
获取原文并翻译 | 示例
           

摘要

C-60[CpRu(CO)(2)](2) is only one transition-metal fullerene complex with pure eta(1)-coordinated bonds, which was recently synthesized through the reaction between dinuclear Ru complex [CpRu(CO)(2)](2) and C60. Though new properties can be expected in the eta(1)-coordinated metal-fullerene complex, its characteristic features are unclear, and the [2 + 2]-type formation reaction is very slow with a very small yield. A density functional theory study discloses that the eta(1)-coordinated bond is formed by a large overlap between the Ru ds orbital and C ps one involved in the lowest unoccupied molecular orbital (LUMO) (p*) of C60 unlike the well-known eta(2)-coordinated metal-fullerene complex which has a p-type coordinate bond with metal dp orbital. The binding energy per one Ru-C bond is much smaller than those of eta(2)-coordinated Pt(PMe3)(2)(C-60) and IrH(CO)(PH3)2(C60) because the Ru d orbital exists at low energy. The formation reaction occurs via Ru-Ru bond cleavage on the C60 surface followed by a direction change of CpRu(CO)(2) to afford C-60[CpRu(CO)(2)](2) in a stepwise manner via two asymmetrical transition states to avoid a symmetry-forbidden character. The calculated Gibbs activation energy (Delta G degrees(double dagger)) is very large and the Gibbs reaction energy (Delta G degrees) is moderately negative, which are consistent with a very slow reaction rate and very small yield. The charge transfer from CpRu(CO)2 to fullerene CT(Ru ? C60) is important in the reaction, but it is small due to the presence of the Ru d orbital at low energy, which is the reason for the large Delta G degrees(double dagger) and moderately negative Delta G degrees. The use of Li+@C-60 is theoretically predicted to accelerate the reaction and increase the yield of Li+@C-60[CpRu(CO)(2)](2), because the CT(Ru -> C-60) is enhanced by the low energy LUMO of Li+@C60. It is also predicted that Li+@C-60[Re(CO)(4)(PMe3)](2) is a next promising target for the synthesis of the ?1-coordinated metal-fullerene complex, but syntheses of C-60[Co(CO)(4)](2), C-60[Re(CO)5]2, Li+@C-60[Co(CO)(4)](2), and Li+@C-60[Re(CO)(5)](2) are difficult. The use of nonpolar solvent is another important factor for the synthesis of the eta(1)-coordinated metal complex with Li+@C60.
机译:C-60 [Cpru(CO)(2)](2)仅是一种过渡金属富勒烯络合物,其具有纯Eta(1) - 核酸键,最近通过二核Ru复合物之间的反应合成[Cpru(CO)( 2)](2)和C60。虽然在ETA(1) - 扶持金属 - 富勒烯复合物中可以预期新的性质,但其特征尚不清楚,并且[2 + 2]型形成反应非常慢,产量非常小。密度函数理论研究公开了通过涉及C60的最低未占用分子轨道(LumO)(P *)的Ru Ds轨道和C PS之间的大重叠形成,与井不同已知的ETA(2)-COOSCOOSCOORDINING金属 - 富勒烯络合物,其具有与金属DP轨道的p型坐标键。每一个Ru-C键的结合能远小于ETA(2)-COOSOODINATING PT(PME3)(2)(2)(C-60)和IRH(CO)(PH3)2(C60),因为RU D轨道在低能量下存在。通过Ru-ru键切割在C60表面上进行形成反应,然后通过两个逐步的方式得到C-60 [Cpru(CO)(2)的方向变化,得到C-60 [Cpru(CO)(2)](2)不对称过渡状态避免对称禁区。计算出的Gibbs激活能量(Delta G度(双匕首)非常大,并且Gibbs反应能量(Delta G度)是适度负的,其与非常缓慢的反应速率和非常小的产率一致。来自Cpru(CO)2至富勒烯CT(Ru = C60)的电荷转移在反应中是重要的,但由于ru d轨道在低能量下存在,这是大Δg度的原因(双匕首)和中度负面的delta g度。理论上,使用Li + @ C-60以加速反应并增加Li + /℃-60 [Cpru(2)](2)的产率,因为CT(Ru - > C-60)是由Li + @ C60的低能量Lumo增强。还预测,Li + @ C-60 [Re(CO)(4)(PME3)](2)是合成α1配位金属 - 富勒烯复合物的下一个有希望的靶标,但C-60的合成[Co(CO)(4)](2),C-60 [Re(CO)5] 2,Li + / C-60 [Co(Co)(4)](2),和Li + @ C-60 [ Re(CO)(5)](2)很困难。非极性溶剂的使用是合成ETA(1) - C60的ETA(1)核酸金属络合物的另一个重要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号