首页> 外文期刊>Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics >Computational Study of an Iron(II) Polypyridine Electrocatalyst for CO2 Reduction: Key Roles for Intramolecular Interactions in CO2 Binding and Proton Transfer
【24h】

Computational Study of an Iron(II) Polypyridine Electrocatalyst for CO2 Reduction: Key Roles for Intramolecular Interactions in CO2 Binding and Proton Transfer

机译:二氧化碳减少铁(II)粘吡啶电催化剂的计算研究:CO2结合和质子转移中分子内相互作用的关键作用

获取原文
获取原文并翻译 | 示例
       

摘要

A solar-driven conversion of CO2 into fuels by artificial photosynthesis would not only mitigate the greenhouse effect but also provide an alternative to obtain fuels in a renewable fashion. To this end, the new iron polypyridine catalyst [Fe(bpy(NHEt)PY2Me)L-2](2+) (L = H2O, CH3CN) was recently developed for the electrochemical reduction of CO2 to CO. In this study, we performed density functional theory (DFT) electronic structure calculations to shed light on a possible pathway for CO2 reduction and the origin of the selectivity between CO2 reduction versus the hydrogen evolution reaction. The metal center remains Lewis acidic throughout the reduction process due to ligand loss and mainly ligand-based reduction stabilized by antiferromagnetic coupling to a high-spin Fe(II) center. This results in a high barrier for hydride formation but a facile addition and activation of CO2 via an eta(2) coordination and stabilizing hydrogen bonding by the amine group. The second unoccupied equatorial coordination site opens up the possibility for an intramolecular protonation with a coordinated water ligand. This facilitates protonation because not only CO2 but also the proton source H2O is activated and properly aligned for a proton transfer due to the Fe-OH2 bond; consequently, both protonation steps are facile. The moderate ligand field allows a rapid ligand exchange for a second intramolecular protonation step and facilitates an exergonic CO release. The lower selectivity of the related [Fe(bpy(OH)PY2Me)L-2](2+) complex can be related to its more acidic second coordination sphere, which enables an intramolecular proton transfer that is kinetically competitive with CO2 addition.
机译:通过人造光合作用的太阳能驱动的CO2转化为燃料,不仅会减轻温室效应,还提供一种以可再生方式获得燃料的替代方案。为此,最近新的铁蛋白催化剂[Fe(BPY(NHET)PY2ME)L-2](2+)(L = H2O,CH 3 CN)用于电化学还原CO2至CO.在本研究中,我们对CO 2减少的可能途径的表演密度函数理论(DFT)电子结构计算对CO 2的可能途径和CO2减少与氢进化反应之间的选择性起源。由于韧带损失,金属中心在整个还原过程中保持路易斯酸性,并且主要通过反铁磁偶联至高旋转Fe(II)中心稳定的配体基降低。这导致氢化物形成的高屏障,但是通过ETA(2)配位和稳定胺基氢键合的CO 2的容纳和活化。第二个未占用的赤道配位部位为分子内质子化与配位水配体开辟了可能性。这促进了质子化,因为不仅是CO 2,而且由于Fe-OH2键,质子源H2O也被激活并适当地对准质子转移;因此,两个质子化步骤都很容易。中等配体场允许用于第二分子内质子化步骤的快速配体交换,并促进Exergonic Co释放。相关[Fe(OH)py2ME)L-2](2+)复合物的较低选择性可以与其更酸性的第二协调球体有关,这使得分子内的质子转移能够与CO 2添加具有动力学上竞争。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号