首页> 外文期刊>International Journal of Quantum Chemistry >Predicting the redox properties of uranyl complexes using electronic structure calculations
【24h】

Predicting the redox properties of uranyl complexes using electronic structure calculations

机译:使用电子结构计算预测铀络合物的氧化还原性能

获取原文
获取原文并翻译 | 示例
           

摘要

A plethora of chemical reactions is redox driven processes. The conversion of toxic and highly soluble U(VI) complexes to nontoxic and insoluble U(IV) form are carried out through proton coupled electron transfer by iron containing cytochromes and mineral surfaces such as machinawite. This redox process takes place through the formation of U(V) species which is unstable and immediately undergo the disproportionation reaction. Thus, theoretical methods are extremely useful to understand the reduction process of U(VI) to U(V) species. We here have carried out the structures and reduction properties of several U(VI) to U(V) complexes using a variety of electronic structure methods. Due to the lack of experimental ionization energies for uranyl (UO2(V)-UO2(VI)) couple, we have benchmarked the current and popularly used density functionals and cost effective ab initio methods against the experimental electron detachment energies of [UO2F4](1-/2-) and [UO2Cl4](1-/2-). We find that electron detachment energy of U(VI) predicted by RI-MP2 level on the BP86 geometries correlate nicely with the experimental and CCSD(T) data. Based on our benchmark studies, we have predicted the structures and electron detachment energies of U(V) to U(VI) species for a series of uranium complexes at the RI-MP2//BP86 level which are experimentally inaccessible till date. We find that the redox active molecular orbital is ligand centered for the oxidation of U(VI) species, where it is metal centered (primarily f-orbital) for the oxidation of U(V) species. Finally, we have also calculated the detachment energies of a known uranyl [UO2](1+) complex whose X-ray crystal structures of both oxidation states are available. The large bulky nature of the ligand stabilizing the uncommon U(V) species which cannot be routinely studied by present day CCSD(T) methods as the system size are more than 20-30 atoms. The success of our efficient computational strategy can be experimentally verified in the near future for the complex as the structures are stable in gas phase which can undergo oxidation.
机译:过多的化学反应是氧化还原驱动过程。通过通过含有含有细胞变性和矿物表面如机械术的铁,通过质子偶联电子转移来进行毒性和高度可溶性U(VI)复合物与无毒和不溶性U(IV)形式的转化。这种氧化还原过程通过形成U(v)种类而不稳定并且立即进行歧化反应。因此,理论方法非常有用,可以理解U(VI)的还原过程对U(v)种。我们在这里使用各种电子结构方法对U(V)复合物进行了几种U(VI)的结构和减少性能。由于铀酰缺乏用于铀酰(UO2(v)-uo2(vi))夫妇,我们已经基准测试了电流和普遍使用的密度函数,以及针对[UO2F4]的实验电子分离能量的成本有效的AB INITIO方法( 1- / 2-)和[UO2Cl4](1- / 2-)。我们发现,通过实验和CCSD(T)数据,RI-MP2电平预测的U(VI)的电子分离能量被BP86几何形状相关。基于我们的基准研究,我们预测了在RI-MP2 // BP86水平的一系列铀络合物中对U(v)的结构和电子分离能量,以实验无法到达日期。我们发现氧化还原活性分子轨道是用于氧化U(VI)物种的配体,其中金属为中心(主要是F-Orbital),用于氧化U(v)种。最后,我们还计算了其氧化态的X射线晶体结构的已知铀酰基[UO2](1+)复合物的分离能。稳定的稳定体的大笨重性质稳定罕见的U(v)种类不能通过现今的CCSD(T)方法常规研究,因为系统尺寸超过20-30个原子。我们的有效计算策略的成功可以在不久的将来进行实验验证,因为结构在可以进行氧化的气相中稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号