...
首页> 外文期刊>International Journal of Modern Physics, B. Condensed Matter Physics, Statistical Physics, Applied Physics >Population imbalance, macroscopic tunneling and intermodal entanglement of two-mode Bose-Einstein condensate under the influence of dissipation process
【24h】

Population imbalance, macroscopic tunneling and intermodal entanglement of two-mode Bose-Einstein condensate under the influence of dissipation process

机译:在耗散过程的影响下,群体不平衡,宏观隧道和两样血糖凝聚物的多语缠结

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we study the dissipative dynamics of a system which is composed of two atomic Bose-Einstein condensates (BECs) interacting through the Josephson-like coupling. To model a more realistic physical system, the inevitable dissipation effect is considered via the interaction between the system and its environment, in particular, a thermal reservoir. In this respect, after introducing a proper Hamiltonian for the model, we analytically solve the corresponding quantum Heisenberg-Langevin equations and then obtain explicit analytical expressions for population imbalance, macroscopic tunneling current and intermodal entanglement. Generally, the dynamics of the system is very sensitive to the chosen values of tunneling coupling strength, initial population as well as the characteristics of interaction between the system and its reservoirs. Also, the time evolution of the above-mentioned physical quantities shows oscillatory decaying behavior where the frequency of oscillations depends on the strength of tunneling interaction between the two subsystems. The oscillatory pattern of population imbalance and tunneling current is more regular in comparison with the intermodal entanglement. Although the system is always separable for low initial population, we show that it tends to an entangled state as its initial population is increased. In particular, the amount and the time interval of the entanglement can be effectively controlled via the dissipation parameter. Also, to get an insight into the effect of nonlinear interaction on the behavior of dynamical evolution of the considered system, we numerically investigate the population imbalance in the absence and presence of such interactions. A qualitative comparison shows that the previous theoretical works and numerical simulations confirm our obtained results.
机译:在本文中,我们研究了由Josephsephson耦合的两个原子β-爱因斯坦凝聚物(BECS)组成的系统的耗散动态。为了模拟更现实的物理系统,通过系统与环境之间的相互作用来考虑不可避免的耗散效果,特别是热储存器。在这方面,在引入模型的适当哈密尼亚之后,我们分析了对应的量子Heisenberg-Langevin方程,然后获得了群体不平衡,宏观隧道电流和多相缠结的显式分析表达。通常,系统的动态对隧道耦合强度,初始群体的所选值非常敏感,初始群体以及系统与其储存器之间的相互作用的特性。而且,上述物理量的时间演变显示了振荡衰减行为,其中振荡频率取决于两个子系统之间的隧道相互作用的强度。与多语纠缠相比,群体不平衡和隧道电流的振荡模式更加规律。虽然系统总是可分离初始群体,但我们表明它倾向于纠缠态,因为其初始群体增加。特别地,可以通过耗散参数有效地控制缠结的量和时间间隔。此外,为了了解非线性相互作用对所考虑的系统的动态演化行为的影响,我们在缺乏和存在这种相互作用的情况下进行了数值研究。定性比较表明,以前的理论作品和数值模拟确认了我们获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号