...
首页> 外文期刊>International Journal of Biological Macromolecules: Structure, Function and Interactions >Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications
【24h】

Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications

机译:壳聚糖,羧甲基纤维素和银纳米粒子改性纤维素纳米筒纳米母植物纳米组织工程应用的纳米生物复合支架

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the present work, we aimed to synthesize highly efficient nano-composite polymeric scaffolds with controllable pore size and mechanical strength. We prepared nanocomposite (CCNWs-AgNPs) of silver nanoparticles (AgNPs) decorated on carboxylated CNWs (CCNWs) which serves dual functions of providing mechanical strength and antimicrobial activity. Scaffolds containing chitosan (CS) and carboxymethyl cellulose (CMC) with varying percent of nanocomposite were fabricated using freeze drying method. XRD and FESEM analysis of nanocomposite revealed highly crystalline structure with AgNPs (5.2 nm dia) decorated on similar to 200 nm long CCNWs surface. FTIR analysis confirmed the interaction between CCNWs and AgNPs. Incorporation of nanocomposite during scaffolds preparation helped in achieving the desirable 80-90% porosity with pore diameter ranging between 150 and 500 pm and mechanical strength was also significantly improved matching with the mechanical strength of cancellous bone. The swelling capacity of scaffolds decreased after the incorporation of nanocomposite. In turn, scaffold degradation rate was tuned to support angiogenesis and vascularization. Scaffolds apart from exhibiting excellent antimicrobial activity, also supported MG63 cells adhesion and proliferation. Incorporation of CCNWs also resulted in improved biomineralization for bone growth. Overall, these studies confirmed excellent properties of fabricated scaffolds, making them self-sustained and potential antimicrobial scaffolds (without any loaded drug) to overcome bone related infections like osteomyelitis. (C) 2018 Elsevier B.V. All rights reserved.
机译:另外,在本工作中,我们的目的是合成具有可控孔隙尺寸和机械强度的高效率的纳米复合材料的聚合物支架。我们制备装饰上的羧化CNWs(CCNWs)银纳米颗粒(的AgNPs)其用于提供机械强度和抗微生物活性的双功能的纳米复合材料(CCNWs-的AgNPs)。含有脱乙酰壳多糖(CS)和羧甲基纤维素(CMC)和不同纳米复合材料的百分比的支架使用冷冻干燥法制造。纳米复合材料的X射线衍射和FESEM分析揭示了与装饰上相似至200nm长CCNWs表面的AgNPs(5.2纳米直径)高度结晶结构。 FTIR分析证实CCNWs和的AgNPs之间的相互作用。支架在制备过程中的纳米复合材料的掺入与孔径150和下午和机械强度之间的范围500实现期望的80-90%的孔隙率帮助也与松质骨的机械强度改进的显著匹配。支架的溶胀能力的纳米复合材料的掺入之后下降。反过来,支架降解率调谐到支持血管发生和血管形成。支架除了表现出优良的抗菌活性,同时也支持MG63细胞粘附和增殖。 CCNWs的加入也导致骨骼生长改善生物矿化。总的来说,这些研究证实了制造支架的优异性能,使其自我维持的和潜在的抗菌支架(没有任何载药),以克服骨相关的感染,如骨髓炎。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号