首页> 外文期刊>International Journal of Biological Macromolecules: Structure, Function and Interactions >Conductive biomass-based composite wires with cross-linked anionic nanocellulose and cationic nanochitin as scaffolds
【24h】

Conductive biomass-based composite wires with cross-linked anionic nanocellulose and cationic nanochitin as scaffolds

机译:导电生物质基复合电线,具有交联阴离子纳米纤维素和阳离子纳米型作为支架

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, a series of conductive composite wires were successfully prepared by combining dispersions of multi-wall carbon nanotubes (MWCNTs) and TEMPO-oxidized cellulose nanofibers (TOCNFs) with different MWCNTs contents into a dispersion of partially deacetylated alpha-chitin nanofibers (alpha-DECHNs) followed with a drying process. The TOCNFs/MWCNTs/alpha-DECHNs composite wires were prepared by extruding the negatively charged TOCNFs/MWCNTs dispersion into the positively charged alpha-DECHNs dispersion. The contact of the positively charged alpha-DECHNs and the negatively charged TOCNFs/MWCNTs triggers the electrostatic interaction (heterocoagulation) resulting in wire-shaped conductive composites. The SEM analysis indicates this conductive composite material has a wire-like shape with a rough but tight surface. The properties of samples were characterized by a zeta potential analyzer (Zetasizer Nano), a four-probe, an electrochemical workstation, a Fourier transform infrared spectroscopy (FTIR), an X-ray diffractometer (XRD), and a thermogravimetric analyzer (TG). Besides, the conductivity and the AC impedance of TOCNF5/MWCNTs/alpha-DECHNs composite wires with different MWCNTs contents were also analyzed. The conductivity of the composite wire increases from 9.98 x 10(-6) S.cm(-1) to 1.56 x 10(-3) S.cm(-1) as the MWCNTs content raises from 3.0 wt% to 14.0 wt%. When the MWCNTs content reaches 14.0 wt%, the prepared composite wire can light up LED at a voltage of 5 V, indicating the great potential of this biomass-based conductive composite in conductive material application. (C) 2019 Elsevier B.V. All rights reserved.
机译:在该研究中,通过将多壁碳纳米管(MWCNT)和凝固纤维素纳米纤维(TOCNF)与不同的MWCNT含量的分散体组合成分脱乙酰化α-丁蛋白纳米纤维分散体(α -dechns)随后具有干燥过程。通过将带负电荷的TOCNFS / MWCNT分散体挤出到带正电荷的α-Dechns分散体中,制备ToCNFS / MWCNT /α-Dechns复合线。带正电荷的α-Dechns和带负电的ToCNFS / MWCNT的接触触发了导致线状导电复合材料的静电相互作用(杂血压)。 SEM分析表明该导电复合材料具有粗糙但紧密表面的线状形状。样品的特性是通过Zeta电位分析仪(Zetasizer Nano),四探针,电化学工作站,傅里叶变换红外光谱(FTIR),X射线衍射仪(XRD)和热重分析仪(TG)。 。此外,还分析了具有不同MWCNT含量的TOCNF5 / MWCNT /α-Dechns复合电线的电导率和AC阻抗。随着MWCNTS含量从3.0wt%升高至14.0wt%,复合丝的电导率从9.98×10(-6)℃/℃至1.56×10(-3)升(-1)增加到1.56×10(-3)。 。当MWCNTS含量达到14.0wt%时,制备的复合丝可以以5V的电压点亮LED,表示该基于生物量的导电复合材料在导电材料应用中的巨大电位。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号