首页> 外文期刊>Journal of Physics. Condensed Matter >Advancing density functional theory to finite temperatures: Methods and applications in steel design
【24h】

Advancing density functional theory to finite temperatures: Methods and applications in steel design

机译:将密度泛函理论推进到有限温度:钢设计中的方法和应用

获取原文
获取原文并翻译 | 示例
           

摘要

The performance of materials such as steels, their high strength and formability, is based on an impressive variety of competing mechanisms on the microscopic/atomic scale (e.g. dislocation gliding, solid solution hardening, mechanical twinning or structural phase transformations). Whereas many of the currently available concepts to describe these mechanisms are based on empirical and experimental data, it becomes more and more apparent that further improvement of materials needs to be based on a more fundamental level. Recent progress for methods based on density functional theory (DFT) now makes the exploration of chemical trends, the determination of parameters for phenomenological models and the identification of new routes for the optimization of steel properties feasible. A major challenge in applying these methods to a true materials design is, however, the inclusion of temperature-driven effects on the desired properties. Therefore, a large range of computational tools has been developed in order to improve the capability and accuracy of first-principles methods in determining free energies. These combine electronic, vibrational and magnetic effects as well as structural defects in an integrated approach. Based on these simulation tools, one is now able to successfully predict mechanical and thermodynamic properties of metals with a hitherto not achievable accuracy.
机译:诸如钢之类的材料的性能,其高强度和可成型性是基于微观/原子尺度上令人印象深刻的各种竞争机制(例如位错滑动,固溶硬化,机械孪晶或结构相变)。尽管目前描述这些机制的许多可用概念都是基于经验和实验数据,但越来越明显的是,对材料的进一步改进需要基于更基本的水平。基于密度泛函理论(DFT)的方法的最新进展现在使得探索化学趋势,确定现象学模型的参数以及确定优化钢性能的新途径成为可能。然而,将这些方法应用于真正的材料设计的主要挑战是要包括对所需性能的温度驱动效应。因此,为了提高确定自由能的第一原理方法的能力和准确性,已经开发了各种各样的计算工具。这些以综合的方式结合了电子,振动和磁效应以及结构缺陷。现在,基于这些仿真工具,人们能够以前所未有的精度成功地预测金属的机械和热力学性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号