...
首页> 外文期刊>Journal of Physics. Condensed Matter >Nonequilibrium thermodynamics of interacting tunneling transport: Variational grand potential, density functional formulation and nature of steady-state forces
【24h】

Nonequilibrium thermodynamics of interacting tunneling transport: Variational grand potential, density functional formulation and nature of steady-state forces

机译:相互作用的隧道输运的非平衡热力学:变分的大势,密度泛函公式和稳态力的性质

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The standard formulation of tunneling transport rests on an open-boundary modeling. There, conserving approximations to nonequilibrium Green function or quantum statistical mechanics provide consistent but computational costly approaches; alternatively, the use of density-dependent ballistic-transport calculations (e.g., Lang 1995 Phys. Rev.B 52 5335), here denoted DBT, provides computationally efficient (approximate) atomistic characterizations of the electron behavior but has until now lacked a formal justification. This paper presents an exact, variational nonequilibrium thermodynamic theory for fully interacting tunneling and provides a rigorous foundation for frozen-nuclei DBT calculations as a lowest-order approximation to an exact nonequilibrium thermodynamic density functional evaluation. The theory starts from the complete electron nonequilibrium quantum statistical mechanics and I identify the operator for the nonequilibrium Gibbs free energy which, generally, must be treated as an implicit solution of the fully interacting many-body dynamics. I demonstrate a minimal property of a functional for the nonequilibrium thermodynamic grand potential which thus uniquely identifies the solution as the exact nonequilibrium density matrix. I also show that the uniqueness-of-density proof from a closely related Lippmann-Schwinger collision density functional theory (Hyldgaard 2008 Phys.Rev.B 78 165109) makes it possible to express the variational nonequilibrium thermodynamic description as a single-particle formulation based on universal electron-density functionals; the full nonequilibrium single-particle formulation improves the DBT method, for example, by a more refined account of Gibbs free energy effects. I illustrate a formal evaluation of the zero-temperature thermodynamic grand potential value which I find is closely related to the variation in the scattering phase shifts and hence to Friedel density oscillations. This paper also discusses the difference between the here-presented exact thermodynamic forces and the often-used electrostatic forces. Finally the paper documents an inherent adiabatic nature of the thermodynamic forces and observes that these are suited for a nonequilibrium implementation of the Born-Oppenheimer approximation.
机译:隧道运输的标准公式化基于开放边界模型。在那里,守恒于非平衡格林函数或量子统计力学的近似值可提供一致但计算上昂贵的方法。或者,使用密度依赖的弹道传输计算(例如,Lang 1995 Phys.Rev.B 52 5335),此处表示为DBT,提供了电子行为的计算有效(近似)原子表征,但直到现在仍缺乏形式上的理由。本文介绍了一种精确的,变分的非平衡热力学理论,用于完全相互作用的隧穿,并为冻结核DBT计算提供了严格的基础,以此作为对精确非平衡热力学密度函数评估的最低阶近似。该理论从完整的电子非平衡量子统计力学开始,我确定了非平衡吉布斯自由能的算符,该自由能通常必须视为完全相互作用的多体动力学的隐式解。我证明了非平衡热力学大势能的最小性质,因此可以唯一地将溶液识别为确切的非平衡密度矩阵。我还表明,根据密切相关的Lippmann-Schwinger碰撞密度泛函理论(Hyldgaard 2008 Phys.Rev.B 78 165109)证明的唯一性密度使得可以将变分非平衡热力学描述表达为基于关于通用电子密度泛函完整的非平衡单颗粒配方可改善DBT方法,例如,通过更精确地考虑吉布斯自由能效应。我说明了对零温度热力学大势能值的形式化评估,我发现它与散射相移的变化密切相关,因此与弗里德尔密度振荡密切相关。本文还讨论了此处给出的精确热力学力和经常使用的静电力之间的差异。最后,本文记录了热力学力的固有绝热性质,并观察到它们适合于Born-Oppenheimer近似的非平衡实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号