首页> 外文期刊>Journal of Physics. Condensed Matter >Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist's critical review
【24h】

Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist's critical review

机译:金属和合金中的自旋扩散长度,以及金属/金属界面处的自旋翻转:实验者的批判性评论

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In magnetoresistance (MR) studies of magnetic multilayers composed of combinations of ferromagnetic (F) and non-magnetic (N) metals, the magnetic moment (or related 'spin') of each conduction electron plays a crucial role, supplementary to that of its charge. While initial analyses of MR in such multilayers assumed that the direction of the spin of each electron stayed fixed as the electron transited the multilayer, we now know that this is true only in a certain limit. Generally, the spins 'flip' in a distance characteristic of the metal, its purity, and the temperature. They can also flip at F/N or N1/N2 interfaces. In this review we describe how to measure the lengths over which electron moments flip in pure metals and alloys, and the probability of spin-flipping at metallic interfaces. Spin-flipping within metals is described by a spin-diffusion length, l(sf)(M), where the metal M = F or N. Spin-diffusion lengths are the characteristic lengths in the current-perpendicular-to-plane (CPP) and lateral non-local (LNL) geometries that we focus upon in this review. In certain simple cases, l(sf)(N) sets the distance over which the CPP-MR and LNL-MR decrease as the N-layer thickness (CPP-MR) or N-film length (LNL) increases, and l(sf)(F) does the same for increase of the CPP-MR with increasing F-layer thickness. Spin-flipping at M1/M2 interfaces can be described by a parameter, delta M1/M2, which determines the spin-flipping probability, P = 1-exp(-delta). Increasing delta M1/M2 usually decreases the MR. We list measured values of these parameters and discuss the limitations on their determinations.
机译:在对由铁磁性(F)和非磁性(N)金属组成的多层磁性材料进行的磁阻(MR)研究中,每个传导电子的磁矩(或相关的“自旋”)起着至关重要的作用,作为其传导性的补充收费。虽然在此类多层结构中对MR进行的初始分析假设每个电子的自旋方向在电子穿过多层结构时保持固定,但我们现在知道这仅在特定限制下才是正确的。通常,自旋在金属的距离特性,其纯度和温度方面“翻转”。他们还可以翻转F / N或N1 / N2接口。在这篇综述中,我们描述了如何测量纯金属和合金中电子矩翻转的长度,以及在金属界面处自旋翻转的可能性。金属内的自旋翻转由自旋扩散长度l(sf)(M)描述,其中金属M = F或N。自旋扩散长度是电流垂直于平面(CPP)的特征长度)以及我们在此评论中重点介绍的横向非局部(LNL)几何形状。在某些简单情况下,l(sf)(N)设置CPP-MR和LNL-MR随着N层厚度(CPP-MR)或N膜长度(LNL)的增加而减小的距离,而l( sf)(F)对于CPP-MR随F层厚度增加而增加的效果相同。 M1 / M2接口处的自旋翻转可由参数M1 / M2来描述,该参数确定自旋翻转概率P = 1-exp(-delta)。增加增量M1 / M2通常会降低MR。我们列出了这些参数的测量值,并讨论了对其确定的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号