...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >A quantum-well superlattice solar cell for enhanced current output and minimized drop in open-circuit voltage under sunlight concentration
【24h】

A quantum-well superlattice solar cell for enhanced current output and minimized drop in open-circuit voltage under sunlight concentration

机译:一种量子阱超晶格太阳能电池,可提高电流输出并在阳光集中的情况下将开路电压降降至最低

获取原文
获取原文并翻译 | 示例
           

摘要

Insertion of quantum wells (QWs) extends the absorption edge to a longer wavelength than the value of a p-i-n cell without the QWs, which is preferable for the improved current matching of a InGaP/GaAs/Ge multijunction cell. The QWs, however, reduce the open-circuit voltage (V_(oc)) and degrade the fill factor; the latter is significant for a large number of QWs that are mandatory for sufficient light absorption. As a structure to minimize these drawbacks, a QW superlattice, a strain-balanced In_(0.13)Ga_(0.86)As (4.7 nm)/GaAs_(0.57)P_(0.43) (3.1 nm) stack, was implemented by metalorganic vapour-phase epitaxy. It brought about an enhancement in short-circuit current density (3.0mAcm~(?2)) with a minimal drop in V_(oc)(0.03 V) compared with a p-i-n cell without the superlattice. The collection efficiency of photocarriers from the wells to an external circuit was evaluated: the efficiency was above 0.95 for the superlattice, while it was below 0.8 at a large forward bias for a conventional QW cell with thicker barriers. With the fast electron-hole separation in the superlattice owing to tunnelling transport, the superlattice cell exhibited a steeper increase in V_(oc) as a function of the sunlight concentration ratio than the conventional QW cell: at the concentration ratio of 50, the value of V_(oc) for the superlattice cell was almost equivalent to the value of the GaAs p-i-n cell without QWs. As a possible mechanism behind such an enhancement in V_(oc), photocurrent generation by two-step photon absorption was observed, using the electron ground state of the superlattice as an intermediate state.
机译:插入量子阱(QWs)会比没有QWs的p-i-n电池的吸收边缘扩展到更长的波长,这对于改善InGaP / GaAs / Ge多结电池的电流匹配是优选的。但是,QW会降低开路电压(V_(oc))并降低填充系数;后者对于大量的QW至关重要,而QW对于充分的光吸收是必需的。为了最大程度地减少这些缺点,采用金属有机蒸气法实现了QW超晶格,即应变平衡的In_(0.13)Ga_(0.86)As(4.7 nm)/ GaAs_(0.57)P_(0.43)(3.1 nm)堆叠。相外延。与没有超晶格的p-i-n电池相比,它提高了短路电流密度(3.0mAcm〜(?2)),而V_(oc)(0.03 V)的降幅最小。评估了从孔到外部电路的光载流子的收集效率:超晶格的效率高于0.95,而对于壁垒较厚的常规QW电池,在大的正向偏压下,其效率低于0.8。由于隧道传输,超晶格中的电子-空穴快速分离,与传统的QW晶格相比,超晶格电池的V_(oc)随太阳光浓度比的变化呈现出更陡峭的变化:在浓度比为50时,该值超晶格单元的V_(oc)的值几乎等于没有QW的GaAs引脚单元的值。作为提高V_(oc)的一种可能的机制,观察到通过将超晶格的电子基态作为中间态,通过两步光子吸收产生光电流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号