首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Correlation between the piezo-Barkhausen effect and the fatigue limit of steel
【24h】

Correlation between the piezo-Barkhausen effect and the fatigue limit of steel

机译:压电-巴克豪森效应与钢的疲劳极限之间的关系

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Many types of ferrous metals can sustain an indefinite number of repeated loading cycles (N10 ~7 cycles) provided that the maximum imposed stresses do not exceed certain critical values usually referred to as fatigue or endurance limits. In current practice, these limits are primarily inferred from statistical analyses of numerous fatigue experiments that relate the number of cycles to failure, Nf, to the loading programs. Numerous attempts have been made to bypass these time consuming tests by the direct observation of changes in material microstructures utilizing a variety of physical effects ranging from neutron diffraction, x-ray radiography, acoustic emission and even positron radiation patterns; but none of these approaches has yielded any unambiguous indices of damage. Recently, it has been found that the evolution of piezomagnetic hysteresis, due to magnetization changes induced in ferromagnetic steels by tension and compression, is a reliable indicator of the development of fatigue damage and can lead to practical predictions of service life. Further detailed information concerning processes at the microstructural level can be obtained from measurements of flux jumps associated with the piezomagnetic fields. Sequences of flux variations of the order of 10 ~3Mx or 10 ~(11)Wb, comparable to those observed in conventional Barkhausen experiments, appear when ferromagnetic steels are subjected to tension or compression. The amplitude distribution of these piezo-Barkhausen pulses increases markedly in the vicinity of the endurance limit and appears to provide a rapid means for distinguishing between stable, i.e. safe, loading regimes and those terminating in fatigue failure.
机译:只要最大施加应力不超过某些通常称为疲劳或耐久极限的临界值,许多类型的黑色金属可以承受无限多个重复加载循环(N10〜7个循环)。在当前的实践中,这些限制主要是根据对大量疲劳实验的统计分析得出的,这些疲劳实验将循环次数与故障Nf关联到加载程序。通过利用中子衍射,X射线射线照相,声发射甚至正电子辐射图等多种物理效应,直接观察材料微观结构的变化,已经进行了许多尝试来绕开这些耗时的测试;但是这些方法都没有产生任何明确的损害指数。近来,已经发现,由于拉伸和压缩在铁磁钢中引起的磁化变化而引起的压电磁滞的发展是疲劳损伤发展的可靠指标,并且可以导致使用寿命的实用预测。可以从与压电磁场相关的磁通量跳变的测量中获得有关微观结构过程的更多详细信息。当对铁磁钢进行拉伸或压缩时,会出现与常规Barkhausen实验中观察到的10〜3Mx或10〜(11)Wb数量级的磁通量变化序列。这些压电-巴克豪森脉冲的振幅分布在耐力极限附近显着增加,并且似乎提供了一种用于区分稳定的,即安全的加载方式和终止于疲劳失效的方式的快速手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号