首页> 外文期刊>Journal of Nuclear Materials: Materials Aspects of Fission and Fusion >Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO_(2±x): Implications for nuclear fuel performance modeling
【24h】

Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO_(2±x): Implications for nuclear fuel performance modeling

机译:UO_(2±x)中本征和辐射增强裂变气体(Xe)扩散的原子建模:对核燃料性能建模的启示

获取原文
获取原文并翻译 | 示例
           

摘要

Based on density functional theory (DFT) and empirical potential calculations, the diffusivity of fission gas atoms (Xe) in UO_2 nuclear fuel has been calculated for a range of non-stoichiometry (i.e. UO_(2±x)), under both out-of-pile (no irradiation) and in-pile (irradiation) conditions. This was achieved by first deriving expressions for the activation energy that account for the type of trap site that the fission gas atoms occupy, which includes the corresponding type of mobile cluster, the charge state of these defects and the chemistry acting as boundary condition. In the next step DFT calculations were used to estimate migration barriers and internal energy contributions to the thermodynamic properties and calculations based on empirical potentials were used to estimate defect formation and migration entropies (i.e. pre-exponentials). The diffusivities calculated for out-of-pile conditions as function of the UO_2±x nonstoichiometry were used to validate the accuracy of the diffusion models and the DFT calculations against available experimental data. The Xe diffusivity is predicted to depend strongly on the UO_2±x non-stoichiometry due to a combination of changes in the preferred Xe trap site and in the concentration of uranium vacancies enabling Xe diffusion, which is consistent with experiments. After establishing the validity of the modeling approach, it was used for studying Xe diffusion under in-pile conditions, for which experimental data is very scarce. The radiation-enhanced Xe diffusivity is compared to existing empirical models. Finally, the predicted fission gas diffusion rates were implemented in the BISON fuel performance code and fission gas release from a Ris? fuel rod irradiation experiment was simulated.
机译:根据密度泛函理论(DFT)和经验电势计算,在两种非化学计量条件下,UO_2核燃料中裂变气体原子(Xe)的扩散率都是针对非化学计量范围(即UO_(2±x))计算的。堆(无辐照)和堆内(辐照)条件。这是通过首先导出活化能的表达式来实现的,该表达式解释了裂变气体原子所占据的陷阱位置的类型,其中包括相应类型的移动团簇,这些缺陷的电荷状态以及充当边界条件的化学物质。在下一步中,DFT计算用于估算迁移壁垒和内部能量对热力学性质的贡献,基于经验电势的计算用于估算缺陷的形成和迁移熵(即前指数)。根据UO_2±x非化学计量法对堆外条件计算的扩散率用于验证扩散模型和DFT计算与现有实验数据的准确性。由于优选的Xe俘获位点的变化和能实现Xe扩散的铀空位浓度的变化的组合,Xe的扩散率预计很大程度上取决于UO_2±x的非化学计量。在确定了建模方法的有效性之后,将其用于研究堆内条件下的Xe扩散,因为该条件下的实验数据非常匮乏。将辐射增强的Xe扩散率与现有的经验模型进行比较。最后,在BISON燃料性能规范中实现了预测的裂变气体扩散速率,并从Ris?排放了裂变气体。模拟了燃料棒的辐照实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号